Low-temperature microjoining, such as wire (or ribbon) bonding, tape automated bonding (TAB), and flip chip bonding (FCB), is necessary for electronics packaging. Each type of microjoining takes on various aspects but has common bonding mechanisms regarding friction slip, plastic deformation, and friction heating. In the present paper, solid-state microjoining mechanisms in Au wire (ball) bonding, FCB, Al wire bonding (WB), and Al ribbon bonding are discussed to systematically understand the common bonding mechanisms. Ultrasonic vibration enhances friction slip and plastic deformation, making it possible to rapidly obtain dry interconnects. Metallic adhesion at the central area of the bonding interface is mainly produced by the friction slip. On the other hand, the folding of the lateral side surfaces of the Au bump, Au ball, and Al wire is very important for increasing the bonded area. The central and peripheral adhesions are achieved by a slip-and-fold mechanism. The solid-state microjoining mechanisms of WB and FCB are discussed based on experimental results.

References

1.
Takahashi
,
Y.
, and
Inoue
,
K.
,
1999
, “
Numerical Analysis of Microjoiing Process in Electronic Packaging
,”
Materials Solutions Conference on Joining of Advanced and Specialty Materials
, Cincinnati, OH, Nov. 1–4, pp.
40
49
.
2.
Wentworth
,
S. M.
,
Neikirk
,
D. P.
, and
Brahce
,
C. R.
,
1989
, “
The High-Frequency Characteristics of Tape Automated Bonding (TAB) Interconnects
,”
IEEE Trans. Compon. Hybrids Manuf. Technol.
,
12
(
3
), pp.
340
347
.
3.
Nemoto
,
T.
,
Hirai
,
H.
,
Kaneda
,
K.
, and
Ohdaira
,
H.
,
1990
, “
A Feasibility Study on Single Point TAB for Large Number of Lead Counts and Fine Pitch LSI
,” International Microelectronics Conference (IMC), Tokyo, Japan, May 30–June 1, pp.
202
207
.
4.
Ando
,
T.
,
Tomioka
,
T.
,
Nakazono
,
M.
,
Atumi
,
K.
,
Tane
,
Y.
,
Nakano
,
J.
, and
Hirata
,
S.
,
1993
, “
Fine Pitch TAB Assembly Technology for 820 Pin Count Ceramic PGA Using Single Point Bonding Technology at Room Temperature
,”
IEEE Trans. Compon. Hybrids, Manuf. Technol.
,
16
(
8
), pp.
808
816
.
5.
Kurita
,
Y.
,
Kakegawa
,
C.
, and
Urushima
,
M.
,
1998
, “
Development of 40 μm Pad Pitch TAB Bumpless Bonding Technology
,” 4th
Symposium on Microjoining and Assembly Technology in Electronics (MATE)
, Yokohama, Japan, Jan. 29–30, pp.
53
56
.
6.
Takano
,
N.
,
2009
, “
The Current and Future Prospect in System Integration Packaging Technologies
,”
J. Jpn. Inst. Electron. Packag.
,
12
(
1
), pp.
39
42
.
7.
Baba
,
T.
, and
Igarashi
,
K.
,
2009
, “
Progression of Circuit Formation Technology Using the Semi-Additive Method to COF
,”
J. Jpn. Inst. Electron. Packag.
,
12
(
1
), pp.
2
6
.
8.
Lau
,
J. H.
,
2016
, “
Recent Advances and New Trends in Flip Chip Technology
,”
ASME J. Electron. Packag.
,
138
(3), p.
030802
.
9.
Lum
,
I.
,
Jung
,
J. P.
, and
Zhou
,
Y.
,
2005
, “
Bonding Mechanism in Ultrasonic Gold Ball Bonds on Copper Substrate
,”
Metall. Mater. Trans. A
,
36
(5), pp.
1279
1286
.
10.
Mayer
,
M.
,
Paul
,
O.
,
Bolliger
,
D.
, and
Baltes
,
H.
,
2000
, “
Integrated Temperature Microsensors for Characterization and Optimization of Thermosonic Ball Bonding Process
,”
IEEE Trans. Compon. Packag. Technol.
,
23
(
2
), pp.
393
398
.
11.
Maeda
,
M.
, and
Takahashi
,
Y.
, 2013, “
Ultrasonic Bonding of Aluminum and Copper Wires in Power Electronics
,” First International Joint Symposium on Joining and Welding (IJS-JW), Osaka, Japan, Nov. 6–8, pp. 511–515.
12.
Jeon
,
J.
,
Na
,
S.
,
Jeon
,
S.
,
Mo
,
M.
,
Kang
,
D.
,
Lim
,
K.
, and
Kim
,
J.
,
2017
, “
High Reliability Challenges With Cu Wire Bonding for Automotive Devices in the AEC-Q006
,” IEEE 67th Electronic Components and Technology Conference (
ECTC
), Orlando, FL, May 30–June 2, pp.
1968
1973
.
13.
Lum
,
I.
,
Mayer
,
M.
, and
Zhou
,
Y.
,
2006
, “
Footprint Study of Ultrasonic Wedge-Bonding With Aluminum Wire on Copper Substrate
,”
J. Electron. Mater.
,
35
(
3
), pp.
433
442
.
14.
Maeda
,
M.
,
Kitamori
,
S.
, and
Takahashi
,
Y.
,
2013
, “
Interfacial Microstructure Between Thick Aluminium Wires and Aluminium Alloy Pads Formed by Ultrasonic Bonding
,”
Sci. Technol. Weld. Joining
,
18
(
2
), pp.
103
107
.
15.
Maeda
,
M.
,
Yoneshima
,
Y.
,
Kitamura
,
H.
,
Yamane
,
K.
, and
Takahashi
,
Y.
,
2013
, “
Deformation Behavior of Thick Aluminum Wire During Ultrasonic Bonding
,”
Mater. Trans.
,
54
(
6
), pp.
916
921
.
16.
Takahashi
,
Y.
,
2014
, “
Micro-Joining Applied to Eco Electronics Packaging
,” Fourth
East Asia Symposium on Technology of Welding & Joining
, Xi'an, China, Oct. 21–23, p.
23
.
17.
Takahashi
,
Y.
,
Suzuki
,
S.
,
Ohyama
,
Y.
, and
Maeda
,
M.
,
2012
, “
Numerical Analysis of Interfacial Deformation and Temperature Rise During Ultrasonic Al Ribbon Bonding
,”
J. Phys.: Conf. Ser.
,
379
, p.
012028
.
18.
Takahashi
,
Y.
,
2009
, “
Future Direction of Solid State Microjoining Applied to Environmentally Friendly Electronic Packaging
,”
IEICE Trans. Jpn. Electron. Soc.
,
J92-C
(
11
), pp.
581
594
.
19.
Long
,
Z.
,
Zheng
,
Y.
,
Li
,
C.
, and
He
,
Y.
,
2016
, “
Wire Loss Monitoring in Ultrasonic Wedge Bonding Using the Kalman Filter Algorithm
,”
IEEE Trans. Compon. Packag. Manuf. Technol.
,
6
(
1
), pp.
153
160
.
20.
Qin
,
I.
,
Yauw
,
O.
,
Schulze
,
G.
,
Shah
,
A.
,
Chylak
,
B.
, and
Wong
,
N.
,
2017
, “
Advances in Wire Bonding Technology for 3D Die Stacking and Fan Out Wafer Level Package
,”
IEEE 67th Electronic Components and Technology Conference
(
ECTC
), Orlando, FL, May 30–June 2, pp.
1309
1315
.
21.
Liu
,
Y.
, and
Luk
,
T.
,
2008
, “
Thermosonic Wire Bonding Process Simulation and Bond Pad Over Active Stress Analysis
,”
IEEE Trans. Electron. Packag. Manuf.
,
31
(
1
), pp.
61
71
.
22.
Takahashi
,
Y.
,
Shibamoto
,
S.
, and
Inoue
,
K.
,
1996
, “
Numerical Analysis of the Interfacial Contact Process in Wire Thermocompression Bonding
,”
IEEE Trans. Compon. Packag. Manuf. Technol.: Part A
,
19
(
2
), pp.
213
223
.
23.
Takahashi
,
Y.
, and
Inoue
,
M.
,
2002
, “
Numerical Study of Wire Bonding—Analysis of Interfacial Deformation Between Wire and Pad
,”
ASME J. Electron. Packag.
,
124
(1), pp.
27
36
.
24.
Zhang
,
L.
,
Gumaste
,
V.
,
Poddar
,
A.
,
Nguyen
,
L.
, and
Schulze
,
G.
,
2007
, “
Analytical and Experimental Characterization of Bonding Over Active Circuitry
,”
ASME J. Electron. Packag.
,
129
(4), pp.
391
399
.
25.
He
,
J.
,
Guo
,
Y.
, and
Lin
,
Z.
,
2008
, “
Theoretical and Numerical Analysis of the Effect of Constant Velocity on Thermosonic Bond Strength
,”
Microelectron. Reliab.
,
48
(4), pp.
594
601
.
26.
Tszeng
,
T. C.
,
2015
, “
Mechanism and Model of Bond Formation in Ultrasonic Wire Bonding
,”
ASME
Paper No. IPACK2015-48613.
27.
Wang
,
F.
, and
Han
,
L.
,
2013
, “
Ultrasonic Effect in the Thermosonic Flip Chip Bonding Process
,”
IEEE Trans. Packag. Manuf. Technol.
,
3
(
2
), pp.
336
341
.
28.
Takahashi
,
Y.
,
Inoue
,
M.
, and
Inoue
,
K.
,
1999
, “
Numerical Analysis of Fine Lead Bonding—Effect of Pad Thickness on Interfacial Deformation
,”
IEEE Trans., Compon. Packag. Technol.
,
22
(
2
), pp.
291
298
.
29.
Sha
,
C. H.
,
Lin
,
W. P.
, and
Lee
,
C. C.
,
2012
, “
40 μm Copper-Silver Composite Flip-Chip Interconnect Technology Using Solid-State Bonding
,”
ASME J. Electron. Packag.
,
134
(2), p.
021004
.
30.
Schwizer
,
J.
,
Mayer
,
M.
,
Bolliger
,
D.
,
Paul
,
O.
, and
Baltes
,
H.
,
1999
, “
Thermosonic Ball Bonding: Friction Model Based on Integrated Microsensor Measurements
,” 24th
IEEE/CPMT
Electronics Manufacturing Technology Symposium, Austin, TX, Oct. 18–20, pp.
108
114
.
31.
Takahashi
,
Y.
,
Kameda
,
T.
, and
Aratani
,
S.
,
2003
, “
Numerical Study of Interfacial Deformation during Thermosonic Micro-bonding
,” Ninth Symposium on Microjoining and Assembly Technology in Electronics (MATE), Yokohama, Japan, Feb. 6–7, pp.
67
72
.
32.
Tomioka
,
T.
,
Kubo
,
T.
,
Ohtani
,
K.
, and
Atsumi
,
K.
,
1997
, “
Flip Chip Bonding Technology Using Thermosonic Bonding
,” Third Symposium on Microjoining and Assembly Technology in Electronics (MATE), Yokohama, Japan, Feb. 6–7, pp.
9
14
.
33.
Iguchi
,
T.
,
Tomioka
,
T.
,
Mori
,
I.
, and
Ando
,
T.
,
2003
, “
Chip on Chip Assembly Technology Using Thermosonic Bonding
,” Ninth Symposium on Microjoining and Assembly Technology in Electronics (MATE), Yokohama, Japan, Feb. 6–7, pp.
51
56
.
34.
Harthoorn
,
J. L.
,
1973
, “
Joint Formation in Ultrasonic Welding Compared With Fretting Phenomena for Aluminium
,”
Ultrasonics International Conference
, London, Mar. 27–29, pp.
43
51
.https://archive.org/details/1973JointFormationInUltrasonicWeldingComparedWithFrettingPhenomenaForAluminium
35.
Ishizaka
,
A.
,
Iwata
,
A.
, and
Tamamoto
,
H.
,
1977
, “
Formation of Clean Al Surface by Interface Deformation in Au–Al Thermo-Compression Bonding
,”
J. Jap. Met. Soc.
,
41
(
11
), pp.
1154
1160
.
36.
Seppänen
,
H.
,
Kaskela, Mustonen
,
K.
,
Oinonen
,
M.
, and
Hæggström
,
2007
, “
P1E-5 Understanding Ultrasound-Induced Aluminum Oxide Breakage During Wire Bonding
,”
IEEE
Ultrasonics Symposium, New York
, Oct. 28–31, pp.
1381
1384
.
37.
Onodera
,
M.
,
Shinma
,
Y.
,
Meguro
,
K.
,
Tanaka
,
J.
, and
Kasai
,
J.
,
2008
, “
Wire Bonding Using Pd Plated Cu Wire
,”
J. Jpn. Inst. Electron. Packag.
,
11
(
6
), pp.
444
450
.
38.
Uno
,
T.
,
2011
, “
Enhancing Bondability With Coated Copper Bonding Wire
,”
Microelectron. Reliab.
,
51
(1), pp.
88
96
.
39.
Maeda
,
M.
,
Sato
,
T.
,
Inoue
,
N.
,
Yagi
,
D.
, and
Takahashi
,
Y.
,
2011
, “
Anomalous Microstructure Formed at the Interface Between Copper Ribbon and Tin-Deposited Copper Plate by Ultrasonic Bonding
,”
Microelectron. Reliab.
,
51
(1), pp.
130
136
.
40.
Xu
,
H. C.
,
Silberschmidt
,
V. V.
,
Pramana
,
S. S.
,
White
,
T. J.
, and
Chen
,
Z.
,
2009
, “
A Re-Examination of the Mechanism of Thermosonic Copper Ball Bonding on Aluminium Metallization Pads
,”
Scr. Mater.
,
61
(2), pp.
165
168
.
41.
Xu
,
H.
,
Liu
,
C.
,
Silberschmidt
,
V. V.
,
Pramana
,
S. S.
,
White
,
T. J.
,
Chen
,
Z.
, and
Acoff
,
V. L.
,
2011
, “
Behavior of Alminum Oxide, Intermetallics and Voids in Cu–Al Wire Bonds
,”
Acta Mater.
,
59
(14), pp.
5661
5673
.
42.
Fukuda
,
Y.
,
Iida
,
A.
,
Kizaki
,
Y.
, and
Mori
,
M.
,
1997
, “
An Investigation of Bonding Mechanism for Au-Al Solid Phase Diffusion Flip Chip Bonding
,”
IEICE Trans. Jpn. Electron. Soc.
,
J80-C-II
(
6
), pp.
187
195
.
43.
Uno
,
T.
, and
Tatsumi
,
K.
,
1999
, “
Intermetallic Growth and Void Formation in Au Wire Ball Bonds to Al Pads
,”
J. Jap. Inst. Met.
,
63
(
7
), pp.
828
837
.
44.
Kim
,
H. J.
,
Lee
,
J. Y.
,
Paik
,
K. W.
,
Koh
,
K. W.
,
Won
,
J.
,
Choe
,
S.
,
Lee
,
J.
,
Moon
,
J. T.
, and
Park
,
Y. J.
,
2003
, “
Effects of Cu/Al Intermetallic Compound (IMC) on Copper Wire and Aluminum Pad Bondability
,”
IEEE Trans. Compon. Packag. Technol.
,
26
(
2
), pp.
367
374
.
45.
Fujimoto
,
K.
,
Manabe
,
T.
,
Nakata
,
S.
, and
Fujii
,
A.
,
1996
, “
Influence of Bonding Condition and Surface State on Bondability—Investigation on Cu Wire Stitch Bonding (Report 1)
,”
Q. J. Jpn. Weld. Soc.
,
14
(
1
), pp.
168
173
.
46.
Fujimoto
,
K.
,
Mastani
,
Y.
,
Nakata
,
S.
, and
Fujii
,
A.
,
1996
, “
Influence of Wire Deformation Behavior on Bondability—Investigation on Cu Wire Stitch Bonding (Report 2)
,”
Q. J. Jpn. Weld. Soc.
,
14
(
1
), pp.
174
178
.
47.
Tsumura
,
K.
,
Fujimoto
,
H.
,
Osaka
,
S.
,
Iida
,
T.
, and
Machida
,
K.
,
1988
, “
Fundamental Study of the Copper Wire Ball Bonding Technology and Its Reliability
,” International Microelectronics conference (IMC), Tokyo, Japan, May 25–27, pp.
388
392
.
48.
Tian
,
Y.
,
Wang
,
C.
, and
Zhou
,
Y. N.
,
2008
, “
Bonding Mechanism of Ultrasonic Wedge Bonding of Copper Wire on Au/Ni/Cu Substrate
,”
Trans. Nonferrous Met. Soc. China
,
18
(1), pp.
132
137
.
49.
Tatsumi
,
K.
,
Shimokawa
,
K.
,
Hashino
,
E.
,
Ohzeki
,
Y.
,
Nakamori
,
T.
, and
Tanaka
,
M.
,
1999
, “
Micro-Ball Bumping Technology for Flip Chip and TAB Interconnections
,”
Inter. J. Microcircuits Electron. Packag.
,
22
(
2
), pp.
127
136
.http://www.imaps.org/journal/1999/Q2/tatsumi.pdf
50.
Miki
,
S.
, and
Yamano
,
T.
,
2017
, “
Fast Die Stacking Technology for 3D IC using the Collective Bonding Process
,”
23rd Symposium on Microjoining and Assembly Technology in Electronics
(
MATE
), Yokohama, Japan, Jan. 31–Feb. 1, pp.
273
276
.
51.
Tadaki
,
S.
,
Dote
,
A.
,
Kitada
,
H.
,
Akamatsu
,
T.
,
Sakuyama
,
S.
, and
Nakata
,
T.
,
2017
, “
Study of Thermal Cycle Reliability for 3D Stacked LSI
,” 23rd Symposium on Microjoining and Assembly Technology in Electronics (MATE), Yokohama, Japan, Jan. 31–Feb. 1, pp.
269
272
.
52.
Koide
,
M.
,
Fukuzono
,
K.
,
Sato
,
T.
,
Abe
,
K.
, and
Fujisaki
,
H.
,
2008
, “
High-Performance Flip Chip BGA Technology Based on Thin-Core, and Coreless Package Substrate
,”
J. Jpn. Inst. Electron. Packag.
,
11
(
3
), pp.
212
216
.
53.
Korhonen
,
T.
,
Vuorinen
,
V.
, and
Kivilahti
,
K.
,
2001
, “
Interconnections Based on Bi-Coated SnAg Solder Balls
,”
IEEE Trans. Adv. Packag.
,
24
(
4
), pp.
515
520
.
54.
S. Sakuyama
,
S.
,
Akamatsu
,
T.
,
Uenishi
,
K.
, and
Sato
,
T.
,
2008
, “
Low Temperature Sn-Bi Soldering Technology for Low Stress Packaging
,”
IEICE Trans. Jpn. Electron. Soc.
,
J91-C
(
11
), pp.
534
541
.
55.
Seal
,
S.
,
Glover
,
M. D.
,
Wallace
,
A. K.
, and
Mantooth
,
A.
,
2016
, “
Flip-Chip Bonded Silicon Carbite MOSFETs as a Low Parasitic Alternative to Wire-Bonding
,”
IEEE
4th
Workshop on Wide Bandgap Power Devices and Applications
(
WiPDA
), Fayetteville, AR, Nov. 7–9, pp.
194
199
.
56.
Aoki
,
T.
,
Nakamura
,
E.
,
Hisada
,
T.
,
Mori
,
H.
, and
Yamamichi
,
S.
,
2017
, “
Flip Chip Joining With Low Temperature Solders and Thermal Gradient Bonding
,” International Conference on Electronics Packaging (
ICEP
), Yamagata, Japan, Apr. 19–22, pp.
216
219
.
57.
Tsukada
,
Y.
,
Yamanaka
,
K.
, and
Nejime
,
T.
,
2008
, “
Current Barriers and Future Direction of Semiconductor Packaging With Flip Chip Bonding
,”
IEICE Trans. Jpn. Electron. Soc.
,
J91-C
(
11
), pp.
509
518
.
58.
Orii
,
Y.
,
Sakuma
,
K.
,
Matsumoto
,
K.
, and
Toriyama
,
K.
,
2009
, “
Perspective of Interconnection Technology
,”
J. Jpn. Inst. Electron. Packag.
,
12
(
7
), pp.
588
595
.
59.
Yagi
,
Y.
,
Yoshino
,
M.
,
Nishida
,
K.
, and
Ohtani
,
H.
,
2003
, “
Study on Flip Chip Joint Process With Conductive Adhesive
,” Ninth Symposium on Microjoining and Assembly Technology in Electronics (MATE), Yokohama, Japan, Feb. 6–7, pp.
33
36
.
60.
Luk
,
C. F.
,
Chan
,
Y. C.
, and
Hung
,
K. C.
,
2002
, “
Development of Gold to Gold Interconnection Flip Chip Bonding for Chip on Suspension Assemblies
,”
Microelectron. Reliab.
,
42
(3), pp.
381
389
.
61.
Akiyama
,
Y.
,
Kajiwara
,
R.
,
Tanida
,
K.
,
Umemoto
,
M.
,
Tomita
,
Y.
,
Tago
,
M.
, and
Takahashi
,
K.
,
2003
, “
20 μm-Pitch Micro-Bump Bonding Utilizing Ultrasonic Flip-Chip Technology
,” Ninth Symposium on Microjoining and Assembly Technology in Electronics (MATE), Yokohama, Japan, Feb. 6–7, pp.
45
50
.
62.
Wang
,
F.
, and
Han
,
L.
,
2013
, “
Experimental Study of Thermosonic Gold Bump Flip Chip Bonding With a Smooth End Tool
,”
IEEE Trans. Compon. Packag. Manuf. Technol.
,
3
(
6
), pp.
930
934
.
63.
Lin
,
W. P.
,
Sha
,
C. H.
, and
Lee
,
C. C.
,
2013
, “
40-μm Cu/Au Flip-Chip Joints Made by 200 °C Solid-State Bonding Process
,”
IEEE Trans. Compon. Packag. Manuf. Technol.
,
3
(
1
), pp.
126
132
.
64.
Yokoshima
,
T.
,
Imura
,
F.
, and
Aoyagi
,
M.
,
2009
, “
Newly Developed Flip Chip Bonding Technology for High-Density Interconnects in Semiconductor Package
,”
J. Jpn. Inst. Electron. Packag.
,
12
(
7
), pp.
606
615
.
65.
Sakai
,
T.
,
Sakuyama
,
S.
, and
Mizukoshi
,
M.
,
2008
, “
A New Flip-Chip Bonding Method Using Ultra-Precision Cutting of Metal/Adhesive Layers
,”
J. Jpn. Inst. Electron. Packag.
,
11
(
3
), pp.
217
222
.
66.
Tani
,
M.
,
Watanabe
,
H.
,
Nishimura
,
A.
,
Kachi
,
S.
,
Katada
,
N.
, and
Sugiura
,
S.
,
2010
, “
Development of Ultrasonic Flip Chip Bonding Technology
,”
Fujitsu Ten Tech. J.
,
34
, pp.
19
25
.http://www.fujitsu-ten.com/business/technicaljournal/pdf/34-3.pdf
67.
Bui
,
T. T.
,
Suzuki
,
M.
,
Kato
,
F.
,
Watanabe
,
N.
,
Nemoto
,
S.
, and
Kikuchi
,
K.
,
2013
, “
Modified Thermosonic Flip-Chip Bonding Based on Electroplated Cu Microbumps and Concave Pads for High-Precision Low-Temperature Assembly Applications
,” IEEE 63rd Electronic Components and Technology Conference (
ECTC
), Las Vegas, NV, May 28–31, pp.
425
429
.
68.
Li
,
J.
,
Han
,
L.
,
Duan
,
J.
, and
Zhong
,
J.
,
2007
, “
Interface Mechanism of Ultrasonic Flip Chip Bonding
,”
Appl. Phys. Lett.
,
90
, p.
242902
.
69.
McLaren
,
T. S.
,
Kang
,
S. Y.
,
Zhang
,
W.
,
Ju
,
T. H.
, and
Lee
,
Y. C.
,
1997
, “
Thermosonic Bonding of an Optical Transceiver Based on an 8 × 8 Vertical Cavity Surface Emitting Laser Array
,”
IEEE Trans. Compon. Packag. Manuf. Technol.
,
20
(
2
), pp.
152
160
.
70.
Das
,
N. C.
,
Olver
,
K.
, and
Taysing-Lara
,
M.
,
2009
, “
Flip Chip Bonding of 68 × 68 MWIR LED Arrays
,”
IEEE Trans. Electron. Packag. Manuf.
,
32
(
1
), pp.
9
14
.
71.
Fujii
,
S.
,
Fukui
,
T.
,
Uchida
,
Y.
,
Kurai
,
S.
, and
Taguchi
,
T.
,
2009
, “
Evaluation on Reliability of White LED Light Source Directly Flip-Chip Bonded on Ceramic Substrates
,”
J. Jpn. Inst. Electron. Packag.
,
12
(
1
), pp.
72
78
.
72.
Liu
,
Y.
,
Zhao
,
J.
,
Yuan
,
C. C.
,
Zhang
,
G. Q.
, and
Sun
,
F.
,
2014
, “
Chip-on-Flexible Packaging for High-Power Flip-Chip Ligh-Emitting Diode by AuSn and SAC Soldering
,”
IEEE Trans., Compon. Packag. Manuf. Technol.
,
4
(
11
), pp.
1754
1758.
73.
Kuo
,
C. J.
,
Chen
,
H.
,
Su
,
T.
, and
Huang
,
J.
,
2010
, “
Multi-Objective Optimization of Thermo-Ultrasonic Flip-Chip Bonding Process for High-Brightness Light Emitting Diodes
,”
ASME J. Electron. Packag.
,
132
(4), p.
041006
.
74.
Karasawa
,
J.
,
Segawa
,
M.
,
Kishimoto
,
Y.
,
Aoki
,
M.
, and
Sasaki
,
T.
,
2001
, “
Flip Chip Interconnection Method Applied to Small Camera Module
,” 51st IEEE Electronic Components and Technology Conference (
ECTC
), Orlando, FL, May 29–June 1, pp.
1024
1028
.
75.
Kerachev
,
L.
,
Lembeye
,
Y.
, and
Crebier
,
J. C.
,
2015
, “
Study of Techniques for Flip-Chip Bonding to Organic Substrates for Low-Power Applications
,”
IEEE Trans. Compon. Packag. Manuf. Technol.
,
5
(
10
), pp.
1533
1540
.
76.
Jafarlou
,
S.
,
Fakharzadeh
,
M.
,
Biglarbegian
,
B.
, and
Tazlauanu
,
M.
,
2016
, “
Characterization of Flip-Chip Interconnet for Mm-Wave System in Package Applications
,”
IEEE International Symposium on Antennas and Propagation
(
APSURSI
), Fajardo, Puerto Rico, June 26–July 1, pp.
261
262
.
77.
Suga
,
T.
, and
Otsuka
,
K.
,
2001
, “
Bump-Less Interconnect for Next Generation System Packaging
,”
51st Electronic Components and Technology Conference
(
ECTC
), Orlando, FL, May 29–June 1, pp.
1003
1008
.
78.
Suga
,
T.
,
2008
, “
Cu Bumpless Interconnect by SAB at Room Temperature and 3D Integration
,”
IEICE Trans. Jpn. Electron. Soc.
,
J91-C
(
11
), pp.
519
526
.
79.
Yang
,
W.
,
Lu
,
Y.
, and
Suga
,
T.
,
2016
, “
The Study of Cu-Cu Low Temperature Bonding Using Formic Acid Treatment With/Without Pt Catalyst
,” 17th International Conference on Electronic Packaging Technology (
ICEPT
), Wuhan, China, Aug. 16–19, pp.
784
787
.
80.
Duan
,
J. A.
,
Li
,
J.
,
Han
,
L.
, and
Zhong
,
J.
,
2007
, “
Interface Features of Ultrasonic Flip Chip Bonding and Reflow Soldering in Microelectronic Packaging
,”
Surf. Interface Anal.
,
39
(13), pp.
783
786
.
81.
Takahashi
,
Y.
,
2015
, “
Micro Ultrasonic Bonding Applied to Eco Electronics Packaging
,”
International Conference on Innovative Technology (IN-TECH)
, Dubrovnik, Croatia, Sept. 9–11, pp.
170
173
.
82.
Harman
,
G. G.
, and
Albers
,
J.
,
1977
, “
The Ultrasonic Welding Mechanism as Applied to Aluminum- and Gold-Wire Bonding
,”
IEEE Trans., Parts Hybrids Packag.
,
13
(
4
), pp.
406
412
.
83.
Li
,
J.
,
Deng
,
L.
,
Ma
,
B.
,
Liu
,
L.
,
Wang
,
F.
, and
Han
,
L.
,
2011
, “
Investigation of the Characteristics of Overhang Bonding for 3-D Stacked Dies in Microelectronics Packaging
,”
Microelectron. Reliab.
,
51
(12), pp.
2236
2242
.
84.
Rezvani
,
A.
,
Shah
,
A.
,
Mayer
,
M.
,
Zhou
,
Y.
, and
Moon
,
J. T.
,
2013
, “
Role of Impact Ultrasound on Bond Strength and Al Splash in Cu Wire Bonding
,”
Microelectron. Reliab.
,
53
(7), pp.
1002
1008
.
85.
Farrugia
,
M. L.
,
2013
, “
A New Copper Wire Ball Bonding Process Methodology
,”
IEEE 15th Electronics Packaging Technology Conference
(
EPTC
), Singapore, Dec. 11–13, pp.
173
177
.
86.
Chen
,
Z.
,
Liu
,
Y.
, and
Liu
,
S.
,
2011
, “
Modelling of Copper Wire Bonding Process on High Power LEDS
,”
Microelectron. Reliab.
,
51
(1), pp.
171
178
.
87.
Shah
,
A.
,
Mayer
,
M.
,
Qin
,
I.
,
Huynh
,
C.
,
Zhou
,
Y.
, and
Mayer
,
M.
,
2010
, “
Ultrasonic Friction Power During Thermosonic Au and Cu Ball Bonding
,”
J. Phys. D: Appl. Phys.
,
43
(32), p.
325301
.
88.
Takahashi
,
Y.
,
Maeda
,
M.
,
Doki
,
T.
, and
Matsusaka
,
S.
,
2007
, “
Room Temperature Micro-Bonding of Fine Wire to Foils
,”
Solid State Phenom.
,
127
, pp.
277
282
.
89.
Mori
,
M.
,
Fuda
,
Y.
,
Kizaki
,
Y.
,
Iida
,
A.
, and
Saito
,
M.
,
1998
, “
An Investigation of Stable Bonding for Au-Al Solid Phase Diffusion Bonding Techniques
,”
IEICE Trans. Jpn, Electron. Soc.
,
J81-CII
(7), pp. 623–636.
90.
Takahashi
,
Y.
, and
Maeda
,
M.
,
2006
,
Application of Solid State Bonding to Manufacturing ECO Products
, Vol. 1–2, The Japan Society of Smart Process Engineering, Ibaraki, Japan, pp.
163
166
.
91.
Geißler
,
U.
,
Schneider-Ramelow
,
M.
, and
Reichl
,
H.
,
2009
, “
Hardening and Softening in AlSi1 Bond Contacts During Ultrasonic Wire Bonding
,”
IEEE Trans. Compon. Pack. Technol.
,
32
(
4
), pp.
794
799
.
92.
Shah
,
A.
,
Gaul
,
H.
,
Schneider-Ramelow
,
M.
,
Reichl
,
H.
,
Mayer
,
M.
, and
Zhou
,
Y.
,
2009
, “
Ultrasonic Friction Power During Al Wire Wedge-Wedge Bonding
,”
J. Appl. Phys.
,
106
(1), p.
013503
.
93.
Onuki
,
J.
,
Koizumi
,
M.
, and
Echigoya
,
J.
,
1996
, “
Effect of Si Precipitation on Damage in Ultrasonic Bonding of Thick Al Wire
,”
Mater. Trans. JIM
,
37
(
6
), pp.
1319
1323
.
94.
Onuki
,
J.
,
Koizumi
,
M.
, and
Echigoya
,
J.
,
1996
, “
Microstructural Analysis of the Bonding Interface Between Thick Al Wire and Al-1 mass%Si Electrode Film
,”
Trans. JIM
,
37
(
6
), pp.
1324
1331
.
95.
Takahashi
,
Y.
,
2013
, “
Core Micro-Joining Technology for High Power Module—Power Electronics Packaging
,”
17th KMJA Symposium on Core Technology for Micro-Joining and Electronic Packaging (SMT/PCB & NEPCON KOREA
), Seoul, Korea, Apr. 4–5, pp.
43
61
.
96.
Ando
,
M.
,
Maeda
,
M.
, and
Takahashi
,
Y.
,
2013
, “
Evolution Interfacial Shear Force During Ultrasonic Al Ribbon Bonding
,”
Mater. Trans.
,
54
(
6
), pp.
911
915
.
97.
Zhang
,
G.
,
Takahashi
,
Y.
,
Heng
,
Z.
,
Takashima
,
K.
, and
Misawa
,
K.
,
2015
, “
Ultrasonic Weldability of Al Ribbon to Cu Sheet and the Dissimilar Joint Formation Mode
,”
Mater. Trans.
,
56
(
11
), pp.
1842
1851
.
98.
Maeda
,
M.
,
Kitamura
,
H.
, and
Takahashi
,
Y.
,
2015
, “
Deformation Kinetics of Wiring Ribbons During Ultrasonic Bonding
,”
J. Smart Process. Mater. Environ. Energy
,
4
(
2
), pp.
89
94
.
99.
Takahashi
,
Y.
,
2015
, “
Mechanisms of Micro Thermocompression and Ultrasonic Bonding
,”
110th Micro-Joining Committee Meeting
, Tokyo, Japan, June 5, pp.
1
13
.
100.
Gaul
,
H.
, and
Schneider-Ramelow
,
M.
,
2009
, “
Analysis of the Friction Processes in Ultrasonic Wedge/Wedge-Bonding
,”
Microsyst. Technol.
,
15
(5), pp.
771
775
.
101.
Ando
,
M.
,
Takashima
,
K.
,
Maeda
,
M.
, and
Takahashi
,
Y.
,
2014
, “
Stress Evolution During Ultrasonic Al Ribbon Bonding
,”
IOP Conf. Ser., Mater. Sci. Eng.
,
61
, p.
012005
.
102.
Takashima
,
K.
,
Misawa
,
K.
,
Ando
,
M.
,
Takahashi
,
Y.
, and
Maeda
,
M.
,
2015
, “
Sliding Behavior at The Bonding Interface during Ultrasonic Al Ribbon Bonding
,” 21st Symposium on Microjoining and Assembly Technology in Electronics (MATE), Yokohama, Japan, Feb. 3–4, pp.
439
440
.
You do not currently have access to this content.