Particulate thermal interface materials (TIMs) are commonly used to transport heat from chip to heat sink. While high thermal conductance is achieved by large volume loadings of highly conducting particles in a compliant matrix, small volume loadings of stiff particles will ensure reduced thermal stresses in the brittle silicon device. Developing numerical models to estimate effective thermal and mechanical properties of TIM systems would help optimize TIM performance with respect to these conflicting requirements. Classical models, often based on single particle solutions or regular arrangement of particles, are insufficient as real-life TIM systems contain a distribution of particles at high volume fractions, where classical models are invalid. In our earlier work, a computationally efficient random network model (RNM) was developed to estimate the effective thermal conductivity of TIM systems (Kanuparthi et al., 2008, “An Efficient Network Model for Determining the Effective Thermal Conductivity of Particulate Thermal Interface Materials,” IEEE Trans. Compon. Packag. Technol., 31(3), pp. 611–621; Dan et al., 2009, “An Improved Network Model for Determining the Effective Thermal Conductivity of Particulate Thermal Interface Materials,” ASME Paper No. InterPACK2009-89116.) . This model is extended in this paper to estimate the effective elastic modulus of TIMs. Realistic microstructures are simulated and analyzed using the proposed method. Factors affecting the modulus (volume fraction and particle size distribution (PSD)) are also studied.

References

1.
Maxwell
,
J. C.
,
1873
,
Treatise on Electricity and Magnetism
,
Clarendon Press
,
Oxford, UK
.
2.
Rayleigh
,
L.
,
1892
, “
On Influence of Obstacles Arranged in Rectangular Order Upon the Properties of a Medium
,”
Philos. Mag.
,
34
(
211
), pp.
481
502
.
3.
Bruggeman
,
D.
,
1935
, “
Berechnung Verschiedener Physikalischer Konstanten Von Heterogenen Substanzen
,”
Ann. Phys. (Liepzig)
,
24
(
7
), pp.
636
679
.
4.
Kanuparthi
,
S.
,
Rayasam
,
M.
,
Subbarayan
,
G.
,
Sammakia
,
B.
,
Gowda
,
A.
, and
Tonapi
,
S.
,
2009
, “
Hierarchical Field Composition for Simulations of Near-Percolation Thermal Transport in Particulate Materials
,”
Comput. Methods Appl. Mech. Eng.
,
198
(
5–8
), pp.
657
668
.
5.
Batchelor
,
G. K.
, and
O'Brien
,
R. W.
,
1977
, “
Thermal or Electrical Conduction Through a Granular Material
,”
Proc. R. Soc. London, Ser. A
,
355
(
1682
), pp.
313
333
.
6.
Kanuparthi
,
S.
,
Subbarayan
,
G.
,
Siegmund
,
T.
, and
Sammakia
,
B.
,
2008
, “
An Efficient Network Model for Determining the Effective Thermal Conductivity of Particulate Thermal Interface Materials
,”
IEEE Trans. Compon. Packag. Technol.
,
31
(
3
), pp. 611–621.
7.
Dan
,
B.
,
Kanuparthi
,
S.
,
Subbarayan
,
G.
, and
Sammakia
,
B.
,
2009
, “
An Improved Network Model for Determining the Effective Thermal Conductivity of Particulate Thermal Interface Materials
,”
ASME
Paper No. InterPACK2009-89116.
8.
Fu
,
S.-Y.
,
Feng
,
X.-Q.
,
Lauke
,
B.
, and
Mai
,
Y.-W.
,
2008
, “
Effects of Particle Size, Particle/Matrix Interface Adhesion and Particle Loading on Mechanical Properties of Particulate-Polymer Composites
,”
Composites, Part B
,
39
(
6
), pp.
933
961
.
9.
Einstein
,
A.
,
1905
, “
Ueber Die Von Der Molekularkinetischen Fluessigkeiten Suspendierten Teilchen
,”
Ann. Phys. (Leipzig)
,
322
(8), pp.
549
560
.
10.
Guth
,
E.
,
1945
, “
Theory of Filler Reinforcement
,”
J. Appl. Phys.
,
16
(
1
), pp.
20
25
.
11.
Kerner
,
E. H.
,
1956
, “
The Elastic and Thermoelastic Properties of Composite Media
,”
Proc. Phys. Soc. B
,
69
(
8
), pp.
808
813
.
12.
Torquato
,
S.
,
2002
,
Random Heterogeneous Materials
,
Springer-Verlag
,
New York
.
13.
Hashin
,
Z.
,
1962
, “
The Elastic Moduli of Heterogeneous Materials
,”
ASME J. Appl. Mech.
,
29
(
1
), pp.
143
150
.
14.
Hashin
,
Z.
, and
Shtrikman
,
S.
,
1963
, “
A Variational Approach to the Theory of the Elastic Behaviour of Multiphase Materials
,”
J. Mech. Phys. Solids
,
11
(
2
), pp.
127
140
.
15.
Budiansky
,
B.
,
1965
, “
On the Elastic Moduli of Some Heterogeneous Materials
,”
J. Mech. Phys. Solids
,
13
(
4
), pp.
223
227
.
16.
Hill
,
R.
,
1965
, “
A Self-Consistent Mechanics of Composite Materials
,”
J. Mech. Phys. Solids
,
13
(
4
), pp.
213
222
.
17.
Boucher
,
S.
,
1974
, “
On the Effective Moduli of Isotropic Two-Phase Elastic Composites
,”
J. Compos. Mater.
,
8
(
1
), pp.
82
89
.
18.
McLaughlin
,
R.
,
1977
, “
A Study of the Differential Scheme for Composite Materials
,”
Int. J. Eng. Sci.
,
15
(
4
), pp.
237
244
.
19.
Eshelby
,
J. D.
,
1957
, “
The Determination of the Elastic Field of an Ellipsoidal Inclusion, and Related Problems
,”
Proc. R. Soc. A
,
241
(
1226
), pp.
376
396
.
20.
Halpin
,
J. C.
,
1969
, “
Stiffness and Expansion Estimates for Oriented Short Fiber Composites
,”
J. Compos. Mater.
,
3
(
4
), pp.
732
734
.
21.
Mooney
,
M.
,
1951
, “
The Viscosity of a Concentrated Suspension of Spherical Particles
,”
J. Colloid Sci.
,
6
(
2
), pp.
162
170
.
22.
Santio
,
E.
, and
Muller
,
E. A.
,
2002
, “
Dense Packing of Binary and Polydisperse Hard Spheres
,”
Mol. Phys.
,
100
(
15
), pp.
2461
2469
.
23.
Zhang
,
X.
,
2004
, “
Constructive Modeling Strategies and Implementation Frameworks for Optimal Hierarchical Synthesis
,”
Ph.D. thesis
, Purdue University, West Lafayette, IN.https://docs.lib.purdue.edu/dissertations/AAI3252937/
24.
Rayasam
,
M.
,
Srinivasan
,
V.
, and
Subbarayan
,
G.
,
2007
, “
CAD Inspired Hierarchical Partition of Unity Constructions for NURBS-Based, Meshless Design, Analysis and Optimization
,”
Int. J. Numer. Methods Eng.
,
72
(
12
), pp.
1452
1489
.
25.
Smith
,
J. C.
,
1976
, “
Experimental Values for the Elastic Constants of a Particulate-Filled Glassy Polymer
,”
J. Res. Natl. Bur. Stand., Sect. A
,
80
(
1
), pp. 45–49.http://nvlpubs.nist.gov/nistpubs/jres/80A/jresv80An1p45_A1b.pdf
26.
Nie
,
S.
, and
Basaran
,
C.
,
2005
, “
A Micromechanical Model for Effective Elastic Properties of Particulate Composites With Imperfect Interfacial Bonds
,”
Int. J. Solids Struct.
,
42
(
14
), pp.
4179
4191
.
27.
Braem
,
M.
,
Doren
,
V. E. V.
,
Lambrechts
,
P.
, and
Vanherle
,
G.
,
1987
, “
Determination of Young's Modulus of Dental Composites
,”
J. Mater. Sci.
,
22
(
6
), pp.
2037
2042
.
You do not currently have access to this content.