Abstract

Epoxide functionalized poly(propylene carbonate) (ePPC) was included in an epoxy resin formulation and thermally decomposed to create nanoporous epoxy film. The dielectric constant of the porous epoxy was lower than the epoxy formulation control. The introduction of 30% porosity in the epoxy lowered the dielectric constant from 3.78 to 2.76. A postporosity chemical treatment further lowered the dielectric constant. Hexamethyldisilazane (HMDS) was used to terminate the pore walls with the hydrophobic silane layer and reduce both the dielectric constant and tangent loss of the porous epoxy. Two different styrene maleic anhydride crosslinking agents were used in the epoxy formulation, styrene maleic anhydride 2000 (SMA2000) and styrene maleic anhydride 4000 (SMA4000). The effect of the maleic anhydride concentration within SMA on the electrical, mechanical, and thermal properties of porous epoxy film was evaluated. Epoxy films crosslinked with SMA2000 resulted in films with a higher dielectric constant compared to films prepared with SMA4000 due to higher mole fraction of maleic anhydride within SMA2000. However, SMA2000 crosslinked films yielded films with better mechanical and thermal properties. SMA2000 crosslinked films with 30% porosity had a coefficient of thermal expansion (CTE) of 35.2 ppm/K and glass transition temperature of 143 °C.

References

1.
Zhao
,
X.
, and
Liu
,
H.
,
2010
, “
Review of Polymer Materials With Low Dielectric Constant
,”
Polym. Int.
,
59
, pp.
597
606
.10.1002/pi.2809
2.
Bhattacharya
,
S. K.
, and
Tummala
,
R. R.
,
2002
, “
Epoxy Nanocomposite Capacitors for Application as MCM-L Compatible Integral Passives
,”
ASME J. Electron. Packag.
,
124
(
1
), p.
1
.10.1115/1.1400751
3.
Jin
,
F.
,
Li
,
X.
, and
Park
,
S.
,
2015
, “
Synthesis and Application of Epoxy Resins: A Review
,”
J. Ind. Eng. Chem.
,
29
, pp.
1
11
.10.1016/j.jiec.2015.03.026
4.
Uzunlar
,
E.
,
Schwartz
,
J.
,
Phillips
,
O.
, and
Kohl
,
P. A.
,
2016
, “
Decomposable and Template Polymers: Fundamentals and Applications
,”
ASME J. Electron. Packag.
,
138
(
2
), p.
020802
.10.1115/1.4033000
5.
Junfeng
,
Z.
,
Cheng
,
Q. C.
,
Thiam
,
B. L.
,
Kang
,
E. T.
, and
Koon
,
G. N.
,
1998
, “
Adhesion Improvement of a Poly(Tetrafluoroethylene)-Copper Laminate by Thermal Graft Copolymerization
,”
J. Adhes. Sci. Technol.
,
12
(
11
), pp.
1205
1218
.10.1163/156856198X00399
6.
Yuan
,
C.
,
Wang
,
J.
,
Jin
,
K.
,
Diao
,
S.
,
Sun
,
J.
,
Tong
,
J.
, and
Fang
,
Q.
,
2014
, “
Postpolymerization of Functional Organosiloxanes: An Efficient Strategy for Preparation of Low-k Material With Enhanced Thermostability and Mechanical Properties
,”
Macromolecules
,
47
(
18
), pp.
6311
6315
.10.1021/ma501263c
7.
Fan
,
L.
, and
Wong
,
C. P.
,
2003
, “
Adhesion Evaluation on Low-Cost Alternatives to Thermosetting Epoxy Encapsulants
,”
IEEE Trans. Electron. Packag. Manuf.
,
26
(
2
), pp.
173
178
.
8.
Kohl
,
P. A.
,
2011
, “
Low-Dielectric Constant Insulators for Future Integrated Circuits and Packages
,”
Annu. Rev. Chem. Biomol. Eng.
,
2
(
1
), pp.
379
401
.10.1146/annurev-chembioeng-061010-114137
9.
Balde
,
J.
, and
Messner
,
G.
,
1987
, “
Low Dielectric Constant—The Substrate of the Future
,”
Circuit World
,
14
(
1
), pp.
11
14
.10.1108/eb043930
10.
Morgen
,
M.
,
Zhao
,
J.-H.
,
Hu
,
C.
,
Cho
,
T.
,
Ho
,
P. S.
, and
Todd
,
E.
,
1999
, “
Low Dielectric Constant Materials for Advanced Interconnects
,”
JOM
,
51
(
9
), pp.
37
40
.10.1007/s11837-999-0158-8
11.
Baklanov
,
M. R.
, and
Maex
,
K.
,
2003
, “
Porous Low Dielectric Constant Materials for Microelectronics
,”
J. Appl. Phys.
,
93
(
11
), pp.
8793
8841
.10.1063/1.1567460
12.
Shamiryan
,
D.
,
Abell
,
T.
,
Iacopi
,
F.
, and
Maex
,
K.
,
2004
, “
Low-k Dielectric Materials
,”
Mater. Today
,
7
(
1
), pp.
34
39
.10.1016/S1369-7021(04)00053-7
13.
De
,
B.
, and
Karak
,
N.
,
2015
, “
Ultralow Dielectric, High Performing Hyperbranched Epoxy Thermosets: Synthesis, Characterization and Property Evaluation
,”
RSC Adv.
,
5
(
44
), pp.
35080
35088
.10.1039/C5RA04248H
14.
Jiao
,
J.
,
Wang
,
L.
,
Lv
,
P.
,
Cui
,
Y.
, and
Miao
,
J.
,
2014
, “
Improved Dielectric and Mechanical Properties of Silica/Epoxy Resin Nanocomposites Prepared With a Novel Organic–Inorganic Hybrid Mesoporous Silica: POSS–MPS
,”
Mater. Lett.
,
129
, pp.
16
19
.10.1016/j.matlet.2014.05.010
15.
Jiao
,
J.
,
Shao
,
Y.
,
Huang
,
F.
,
Wang
,
J.
, and
Wu
,
Z.
,
2018
, “
Toughening of POSS–MPS Composites With Low Dielectric Constant Prepared With Structure Controllable Micro/Mesoporous Nanoparticles
,”
RSC Adv.
,
8
(
71
), pp.
40836
40845
.10.1039/C8RA07430E
16.
Pan
,
M.
,
Zhang
,
C.
,
Liu
,
B.
, and
Mu
,
J.
,
2013
, “
Dielectric and Thermal Properties of Epoxy Resin Nanocomposites Containing Polyhedral Oligomeric Silsesquioxane
,”
J. Mater. Sci. Res.
,
2
(
1
), pp.
153
162
.10.5539/jmsr.v2n1p153
17.
Wang
,
J. H.
,
Liang
,
G. Z.
,
Yan
,
H. X.
, and
He
,
S. B.
,
2008
, “
Mechanical and Dielectric Properties of Epoxy/Dicyclopentadiene Bisphenol Cyanate Ester/Glass Fabric Composites
,”
eXPRESS Polym. Lett.
,
2
(
2
), pp.
118
125
.10.3144/expresspolymlett.2008.16
18.
Sasaki
,
S.
,
Electrical
,
N. T. T.
, and
Laboratories
,
C.
,
1986
, “
Dielectric Properties of Cured Epoxy Resins Containing the Perfluorobutenyloxy Group
,”
J. Polym. Sci., Part C: Polym. Lett.
,
24
(
6
), pp.
249
252
.10.1002/pol.1986.140240602
19.
Na
,
T.
,
Jiang
,
H.
,
Zhao
,
L.
, and
Zhao
,
C.
,
2017
, “
Preparation and Characterization of Novel Naphthyl Epoxy Resin Containing 4-Fluorobenzoyl Side Chains for Low-k Dielectrics Application
,”
RSC Adv.
,
7
(
85
), pp.
53970
53976
.10.1039/C7RA09941J
20.
Tao
,
Z.
,
Yang
,
S.
,
Chen
,
J.
, and
Fan
,
L.
,
2007
, “
Synthesis and Characterization of Imide Ring and Siloxane-Containing Cycloaliphatic Epoxy Resins
,”
Eur. Polym. J.
,
43
(
4
), pp.
1470
1479
.10.1016/j.eurpolymj.2007.01.039
21.
Jiang
,
J.
,
Phillips
,
O.
,
Keller
,
L.
, and
Kohl
,
P. A.
,
2017
, “
Grafted Epoxide Functionalized Polypropylene Carbonate Porogen for Low Dielectric Constant Epoxy Films
,”
ECS J. Solid State Sci. Technol.
,
6
(
9
), pp.
N163
N170
.10.1149/2.0281709jss
22.
Tikart
,
F.
,
Leis
,
K.-H.
, and
Kopp
,
W.
,
2011
, “
Epoxy Resin, Styrene-Maleic Anhydride Copolymer and Crosslinking Agent
,” U.S. Patent No. 8,022,140 B2.
23.
Padovani
,
A. M.
,
Riester
,
L.
,
Rhodes
,
L.
,
Bidstrup Allen
,
S. A.
, and
Kohl
,
P. A.
,
2002
, “
Chemically Bonded Porogens in Methylsilsesquioxane
,”
J. Electrochem. Soc.
,
149
(
12
), pp.
F161
F170
.10.1149/1.1515281
24.
Salas-Vernis
,
J. L.
,
Jayachandran
,
J. P.
,
Park
,
S.
,
Kelleher
,
H. A.
,
Allen
,
S. A. B.
, and
Kohl
,
P. A.
,
2004
, “
Hydrophobic/Hydrophilic Surface Modification Within Buried Air Channels
,”
J. Vac. Sci. Technol., B
,
22
(
3
), pp.
953
960
.10.1116/1.1715084
25.
Poletto
,
M.
,
2016
, “
Effect of Styrene Maleic Anhydride on Physical and Mechanical Properties of Recycled Polystyrene Wood Flour Composites
,”
Maderas: Cienc. Tecnol.
,
18
(
4
), pp.
533
542
.10.4067/S0718-221X2016005000046
26.
Kim
,
B.
,
Choi
,
J.
,
Yang
,
S.
,
Yu
,
S.
, and
Cho
,
M.
,
2015
, “
Influence of Crosslink Density on the Interfacial Characteristics of Epoxy Nanocomposites
,”
Polymer
,
60
, pp.
186
197
.10.1016/j.polymer.2015.01.043
27.
Yu
,
J. W.
,
Jung
,
J.
,
Choi
,
Y. M.
,
Choi
,
J. H.
,
Yu
,
J.
,
Lee
,
J. K.
,
You
,
N. H.
, and
Goh
,
M.
,
2016
, “
Enhancement of the Crosslink Density, Glass Transition Temperature, and Strength of Epoxy Resin by Using Functionalized Graphene Oxide Co-Curing Agents
,”
Polym. Chem.
,
7
(
1
), pp.
36
43
.10.1039/C5PY01483B
You do not currently have access to this content.