Abstract

In this study, thermal interface material (TIM) degradation is driven through highly accelerated life test (HALT) using temperature cycling with a prescribed vibrational acceleration for two commercially available materials having thermal conductivities of 6.0 and 8.5 W/m K. HALT specimens were prepared by applying TIM through a 4-mil stencil over AlSiC baseplates in the shape of those used in Wolfspeed CAS325M12HM2 power electronics modules. Baseplates were mounted onto aluminum carrier blocks with embedded thermocouples to characterize the thermal resistance across the baseplate and TIM layer. Thermal dissipation into the top of the baseplates was provided by a custom heating block, which mimics the size and placement of the die junctions in CAS325 modules, applying power loads of 200, 300, and 400 W. After initial characterization, samples were transferred to the HALT chamber with one set of samples exposed to temperature cycling only (TCO) and the other temperature cycling and vibration (TCV). Both sample sets were cycled between temperature extremes of −40 °C and 180 °C with vibrations applied at a peak acceleration of 3.21 Grms. After hundreds of cycles, samples were reevaluated to assess changes in thermal resistance to provide an accelerated measure of TIM degradation. This allows for reliability prediction of useful lifetime (illustrated in a solar inverter case study herein), as well as to provide a basis for developing an accelerated testing method to related temperature cycling to faster methods of degradation. Such techniques provide a means to develop maintenance schedules for power modules for ensuring sufficient thermal performance over the operating lifetime.

References

1.
Zhang
,
Y.
,
Wang
,
H.
,
Wang
,
Z.
,
Yang
,
Y.
, and
Blaabjerg
,
F.
,
2018
, “
Impact of the Thermal-Interface-Material Thickness on IGBT Module Reliability in the Modular Multilevel Converter
,” International Power Electronics Conference (
IPEC
), Niigata, Japan, May 20–24, pp.
2743
2749
.10.23919/IPEC.2018.8507408
2.
Buliński
,
Z.
,
Pawlak
,
S.
,
Krysiński
,
T.
,
Adamczyk
,
W.
, and
Białecki
,
R.
,
2019
, “
Application of the ASTM D5470 Standard Test Method for Thermal Conductivity Measurements of High Thermal Conductive Materials
,”
J. Achiev. Mater. Manuf. Eng.
,
2
(
95
), pp.
57
63
.10.5604/01.3001.0013.7915
3.
DeVoto
,
D.
,
Major
,
J.
,
Paret
,
P.
,
Blackman
,
G.
,
Wong
,
A.
, and
Meth
,
J.
,
2017
, “
Degradation Characterization of Thermal Interface Greases
,” 2017 16th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (
ITherm
), Orlando, FL, May 30–June 2.10.1109/ITHERM.2017.7992501
4.
Due
,
J.
, and
Robinson
,
A.
,
2013
, “
Reliability of Thermal Interface Materials: A Review
,”
Appl. Therm. Eng.
,
50
(
1
), pp.
455
463
.10.1016/j.applthermaleng.2012.06.013
5.
Carlton
,
H.
,
Pense
,
D.
, and
Huitink
,
D.
,
2020
, “
Thermomechanical Degradation of Thermal Interface Materials: Accelerated Test Development and Reliability Analysis
,”
ASME J. Electron. Packag.
,
142
(
3
), p.
031112
.10.1115/1.4047099
6.
Lasance
,
C. J. M.
,
Murray
,
C.
,
Saums
,
D.
, and
Marta
,
R.
,
2006
, “
Challenges in Thermal Interface Material Testing
,”
Annual IEEE Semiconductor Thermal Measurement and Management Symposium
, Dallas, TX, Mar. 14–16, pp. 42–49.10.1109/STHERM.2006.1625204
7.
Goel
,
N.
,
Anoop
,
T. K.
,
Bhattacharya
,
A.
,
Cervantes
,
J. A.
,
Mongia
,
R. K.
,
Machiroutu
,
S. V.
, et al.,
2008
, “
Technical Review of Characterization Methods for Thermal Interface Materials (TIM)
,”
Proceedings of IEEE 11th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems
,
IEEE
, Orlando, FL, May 28–31, pp.
248
258
.10.1109/EPTC.2008.4763637
8.
Chiu
,
C.-P.
,
Chandran
,
B.
,
Mello
,
M.
, and
Kelley
,
K.
,
2001
, “
An Accelerated Reliability Test Method to Predict Thermal Grease Pump-Out in Flip-Chip Applications
,”
Electronic Components and Technology Conference
, Orlando, FL, May 29–June 1, pp.
91
97
.10.1109/ECTC.2001.927696
9.
Whitt
,
R.
,
Hudson
,
S.
,
Huitink
,
D.
,
Yuan
,
Z.
,
Emon
,
A.
, and
Luo
,
F.
,
2020
, “
Additive Manufactured Impinging Coolant, Low Electromagnetic Interference, and Nonmetallic Heat Spreader: Design and Optimization
,”
ASME J. Electron. Packag.
,
142
(
4
), p.
041004
.10.1115/1.4048493
10.
Gwinn
,
J. P.
, and
Webb
,
R. L.
,
2003
, “
Performance and Testing of Thermal Interface Materials
,”
Microelectron. J.
,
34
(
3
), pp.
215
222
.10.1016/S0026-2692(02)00191-X
11.
Chiu
,
C.-P.
,
Solbrekken
,
G. L.
,
LeBonheur
,
V.
, and
Xu
,
Y. E.
,
2000
, “
Application of Phase-Change Materials in Pentium (R) III and Pentium (R) III Xeon/Sup TM/Processor Cartridges
,”
Proceedings of the IEEE International Symposium on Advanced Packaging Materials Processes, Properties and Interfaces (Cat. No. 00TH8507)
,
IEEE
, Braselton, GA, Aug. 6–8, pp.
265
270
.10.1109/ISAPM.2000.869283
12.
Zhang
,
H.
,
Li
,
S.
,
Liu
,
H.
,
Bunt
,
J.
,
Pompeo
,
F.
,
Sikka
,
K.
,
Rivera
,
K. C.
,
Longworth
,
H.
, and
Lian
,
C.
,
2014
, “
Failure Analysis of Thermal Degradation of TIM During Power Cycling
,”
Proceedings of the Fourteenth IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm)
,
IEEE
, Orlando, FL, May 27–30, pp.
404
408
.10.1109/ITHERM.2014.6892309
13.
Zheng
,
J.
,
Jadhav
,
V.
,
Wakil
,
J.
,
Coffin
,
J.
,
Iruvanti
,
S.
,
Langlois
,
R.
,
Yarmchuk
,
E.
, et al.,
2009
, “
Delamination Mechanisms of Thermal Interface Materials in Organic Packages During Reflow and Moisture Soaking
,”
Proceedings of the 59th Packaging Technology Conference
, San Diego, CA, May 26–29, pp.
469
474
.10.1109/ECTC.2009.5074056
You do not currently have access to this content.