Abstract

The fatigue life prediction of the electronic packages under dynamic loading conditions is an increasingly important area of research, with direct application in packaging industries. Current life prediction methodologies are, in general, developed through a finite element (FE) model that is correlated using an experimental data measured through sweep sine testing. The frequency response function (FRF) generated by using a sweep sine testing may suffer from leakage and windowing of the signal may not work correctly, which results in the shift in the amplitude and the resonance frequencies of the package. In consequence, there will be a significant deviation between the actual and the predicted natural frequencies and the amplitude of vibration response in the given excitation range, resulting in the longer time to fail the package during the laboratory based/virtual durability testing. Thus, it is necessary to develop a suitable validation technique in time/frequency domain to address this issue. In this paper, the step sine testing procedure is utilized to validate the FE model of a test vehicle consisting of a board level ball grid array chip package and the resonance-based fatigue testing is performed in the FE-based simulation. The global–local modeling approach is utilized to model the test vehicle and the volume average von Mises stress is used to predict the life of the solder joint. Following the numerical simulations, fatigue test is carried out in the test vehicle at the first resonance frequency obtained from the step sine test. Experimental results show that there are full openings of the corner balls in a very short interval of time. The results of the life prediction from the FE model and from experiments are comparable to each other thus validating the proposed methodology.

References

1.
Ghaffarian
,
R.
,
2000
, “
Accelerated Thermal Cycling and Failure Mechanisms for BGA and CSP Assemblies
,”
ASME J. Electron. Packag.
,
122
(
4
), pp.
335
340
.10.1115/1.1289627
2.
Su
,
S.
,
Akkara
,
F. J.
,
Thaper
,
R.
,
Alkhazali
,
A.
,
Hamasha
,
M.
, and
Hamasha
,
S.
,
2019
, “
A State-of-the-Art Review of Fatigue Life Prediction Models for Solder Joint
,”
ASME J. Electron. Packag.
,
141
(
4
), p.
040802
.10.1115/1.4043405
3.
Che
,
F. X.
,
Pang
,
H. L. J.
,
Zhu
,
W. H.
,
Sun
,
W.
,
Sun
,
A. Y.
,
Wang
,
C. K.
, and
Tan
,
H. B.
,
2007
, “
Development and Assessment of Global-Local Modeling Technique Used in Advanced Microelectronic Packaging
,”
2007 International Conference on Thermal, Mechanical and Multi-Physics Simulation Experiments in Microelectronics and Micro-Systems. EuroSime 2007
, London, UK, Apr. 16–18, pp.
1
7
.10.1109/ESIME.2007.360018
4.
Che
,
F. X.
, and
Pang
,
J. H.
,
2009
, “
Vibration Reliability Test and Finite Element Analysis for Flip Chip Solder Joints
,”
Microelectron. Reliab.
,
49
(
7
), pp.
754
760
.10.1016/j.microrel.2009.03.022
5.
Wong
,
T.-L.
,
Stevens
,
K. K.
, and
Wang
,
G.
,
1991
, “
Experimental Modal Analysis and Dynamic Response Prediction of PC Boards With Surface Mount Electronic Components
,”
ASME J. Electron. Packag.
,
113
(
3
), pp.
244
249
.10.1115/1.2905402
6.
Fan
,
X.
,
Singh Ranouta
,
A.
, and
Singh Dhiman
,
H.
,
2013
, “
Effects of Package Level Structure and Material Properties on Solder Joint Reliability Under Impact Loading
,”
IEEE Trans. Compon., Packag., Manuf. Technol.
,
3
(
1
), pp.
52
60
.10.1109/TCPMT.2012.2217744
7.
Ranouta
,
A. S.
, and
Fan
,
X.
,
2012
, “
Finite Element Modeling of System Design and Testing Conditions for Component Solder Ball Reliability Under Impact
,”
IEEE Trans. Compon., Packag. Manuf. Technol.
,
2
(
11
), pp.
1802
1810
.10.1109/TCPMT.2012.2204884
8.
Jayesh
,
S.
, and
Elias
,
J.
,
2019
, “
Finite Element Modeling and Random Vibration Analysis of BGA Electronic Package Soldered Using Lead Free Solder Alloy—Sn-1Cu-1Ni-1Ag
,”
Int. J. Simul. Multidiscip. Des. Optim.
,
10
, p.
A11
.10.1051/smdo/2019013
9.
Cinar
,
Y.
,
Jang
,
J.
,
Jang
,
G.
,
Kim
,
S.
,
Jang
,
J.
,
Chang
,
J.
, and
Jun
,
Y.
,
2012
, “
Failure Mechanism of FBGA Solder Joints in Memory Module Subjected to Harmonic Excitation
,”
Microelectron. Reliab.
,
52
(
4
), pp.
735
743
.10.1016/j.microrel.2011.11.015
10.
Yu
,
D.
,
Al-Yafawi
,
A.
,
Nguyen
,
T. T.
,
Park
,
S.
, and
Chung
,
S.
,
2011
, “
High-Cycle Fatigue Life Prediction for Pb-Free BGA Under Random Vibration Loading
,”
Microelectron. Reliab.
,
51
(
3
), pp.
649
656
.10.1016/j.microrel.2010.10.003
11.
Xu
,
F.
,
Li
,
C. R.
,
Jiang
,
T. M.
, and
Zhang
,
D. P.
,
2016
, “
Fatigue Life Prediction for PBGA Under Random Vibration Using Updated Finite Element Models
,”
Exp. Tech.
,
40
(
5
), pp.
1421
1435
.10.1007/s40799-016-0141-6
12.
Cinar
,
Y.
, and
Jang
,
G.
,
2014
, “
Fatigue Life Estimation of FBGA Memory Device Under Vibration
,”
J. Mech. Sci. Technol.
,
28
(
1
), pp.
107
114
.10.1007/s12206-013-0946-5
13.
Ren
,
W.-X.
,
Fang
,
S.-E.
, and
Deng
,
M.-Y.
,
2011
, “
Response Surface–Based Finite-Element-Model Updating Using Structural Static Responses
,”
J. Eng. Mech.
,
137
(
4
), pp.
248
257
.10.1061/(ASCE)EM.1943-7889.0000223
14.
Ren
,
W.-X.
, and
Chen
,
H.-B.
,
2010
, “
Finite Element Model Updating in Structural Dynamics by Using the Response Surface Method
,”
Eng. Struct.
,
32
(
8
), pp.
2455
2465
.10.1016/j.engstruct.2010.04.019
15.
Li
,
R. S.
,
2001
, “
A Methodology for Fatigue Prediction of Electronic Components Under Random Vibration Load
,”
ASME J. Electron. Packag.
,
123
(
4
), pp.
394
400
.10.1115/1.1372318
16.
Wu
,
M.-L.
,
2009
, “
Vibration-Induced Fatigue Life Estimation of Ball Grid Array Packaging
,”
J. Micromech. Microeng.
,
19
(
6
), p.
065005
.10.1088/0960-1317/19/6/065005
17.
Malatkar
,
P.
,
Wong
,
S. F.
,
Pringle
,
T.
, and
Loh
,
W. K.
,
2006
, “
Pitfalls an Engineer Needs to Be Aware of During Vibration Testing
,”
56th Electronic Components and Technology Conference 2006
, San Diego, CA, May 30–June 2, p.
6
.10.1109/ECTC.2006.1645918
18.
Steinberg
,
D. S.
,
2000
, Vibration Analysis for Electronic Equipment, John Wiley & Sons, Inc., Hoboken, NJ.
19.
Doranga
,
S.
, and
Wu
,
C. Q.
,
2016
, “
Nonlinear System Identification Technique for a Base-Excited Structure Based on Modal Space Formulation
,”
ASME J. Comput. Nonlinear Dynam.
,
11
(
6
), p.
061016
.10.1115/1.4034394
20.
Doranga
,
S.
, and
Wu
,
C.
,
2021
, “
Study of Nonlinear Effects in a Bolted Joint Using the Base Excitation as an Input
,”
J. Vibroeng.
,
23
(
5
), pp.
1109
1128
.10.21595/jve.2021.21849
21.
Cinar
,
Y.
,
Jang
,
J.
,
Jang
,
G.
,
Kim
,
S.
, and
Jang
,
J.
,
2013
, “
Effect of Solder Pads on the Fatigue Life of FBGA Memory Modules Under Harmonic Excitation by Using a Global–Local Modeling Technique
,”
Microelectron. Reliab.
,
53
(
12
), pp.
2043
2051
.10.1016/j.microrel.2013.06.018
You do not currently have access to this content.