Abstract

Convective heat transfer by jet impingement cooling offers a suitable solution for high heat flux applications. Compared to techniques that rely on bulk conduction in series with convection, direct liquid impingement reduces the thermal resistance between power device hot spots and the coolant. Although capable of highly efficient cooling, static impingement devices must be designed for the worst-case cooling requirements for a transient power profile. This can result in wasted hydraulic performance. Aircraft, highway vehicles, and heavy machinery fall into this category where a substantial factor of safety is required. This work proposes a method for improving power electronics reliability by limiting temperature fluctuations at reduced coolant pressure requirements during transient power cycling using a variable area jet. Single phase jet impingement cooling is implemented in an active control scheme using a variable diameter iris mechanism as the primary nozzle architecture. In addition to pressure drop and temperature control, the active nozzle structure introduces the ability to create pulsating jet flows to further enhance the heat transfer compared to fixed-geometry nozzles. The key underlying fluid mechanics characteristic of pulsating flows is the effect of disrupting the thermal boundary layer on the electrical device surface. By introducing a variable diameter jet, eddy formation can be fine-tuned for optimal boundary layer disruption. Using the definition of the Strouhal number, vortex shedding created by the nonsteady jet flows is directly correlated with the resulting Nusselt number as a function of the iris kinematics. An experimental apparatus for jet impingement thermal-fluid testing is used to evaluate the Nusselt number versus Strouhal number for a parametric study of variable diameter iris configurations. The apparatus utilizes a voice coil actuator to achieve sine and square waveforms, to vary the amplitude of actuation, and to vary the mean of actuation. Finally, power cycling with a single emulated hot spot is performed to estimate the reliability increase as a result of maintaining constant junction temperatures with the active jet impingement scheme.

References

1.
Felder
,
J. L.
,
2016
, “
NASA Electric Propulsion System Studies
,”
EneryTech
,
Salo, Finland
.
2.
Pavlova
,
A.
, and
Amitay
,
M.
,
2006
, “
Electronic Cooling Using Synthetic Jet Impingement
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
128
(
9
), pp.
897
907
.10.1115/1.2241889
3.
Carlomagno
,
G. M.
, and
Ianiro
,
A.
,
2014
, “
Thermo-Fluid-Dynamics of Submerged Jets Impinging at Short Nozzle-to-Plate Distance: A Review
,”
Exp. Therm. Fluid Sci.
,
58
, pp.
15
35
.10.1016/j.expthermflusci.2014.06.010
4.
Violato
,
D.
,
Ianiro
,
A.
,
Cardone
,
G.
, and
Scarano
,
F.
,
2012
, “
Three-Dimensional Vortex Dynamics and Convective Heat Transfer in Circular and Chevron Impinging Jets
,”
Int. J. Heat Fluid Flow
,
37
, pp.
22
36
.10.1016/j.ijheatfluidflow.2012.06.003
5.
Loureiro
,
J. B. R.
, and
Silva Freire
,
A. P.
,
2017
, “
Velocity and Temperature Profiles, Wall Shear Stress and Heat Transfer Coefficient of Turbulent Impinging Jets
,”
Int. J. Heat Mass Transfer
,
107
, pp.
846
861
.10.1016/j.ijheatmasstransfer.2016.10.105
6.
Krishan
,
G.
,
Aw
,
K. C.
, and
Sharma
,
R. N.
,
2019
, “
Synthetic Jet Impingement Heat Transfer Enhancement—A Review
,”
Appl. Therm. Eng.
,
149
, pp.
1305
1323
.10.1016/j.applthermaleng.2018.12.134
7.
Rylatt
,
D. I.
, and
O'Donovan
,
T. S.
,
2014
, “
The Effects of Stroke Length and Reynolds Number on Heat Transfer to a Ducted Confined and Semi-Confined Synthetic Air Jet
,”
J. Phys.: Conf. Ser.
,
525
(
1
), p.
012012
.10.1088/1742-6596/525/1/012012
8.
Ghaffari
,
O.
,
Ikhlaq
,
M.
, and
Arik
,
M.
,
2015
, “
An Experimental Study of Impinging Synthetic Jets for Heat Transfer Augmentation
,”
Int. J. Air-Cond. Refrig.
,
23
(
3
), p.
1550024
.10.1142/S2010132515500248
9.
Silva-Llanca
,
L.
,
Ortega
,
A.
, and
Rose
,
I.
,
2015
, “
Experimental Convective Heat Transfer in a Geometrically Large Two-Dimensional Impinging Synthetic Jet
,”
Int. J. Therm. Sci.
,
90
, pp.
339
350
.10.1016/j.ijthermalsci.2014.11.011
10.
He
,
X.
,
Lustbader
,
J. A.
,
Arik
,
M.
, and
Sharma
,
R.
,
2015
, “
Heat Transfer Characteristics of Impinging Steady and Synthetic Jets Over Vertical Flat Surface
,”
Int. J. Heat Mass Transfer
,
80
, pp.
825
834
.10.1016/j.ijheatmasstransfer.2014.08.006
11.
Mladin
,
E.-C.
, and
Zumbrunnen
,
D. A.
,
2000
, “
Alterations to Coherent Flow Structures and Heat Transfer Due to Pulsations in an Impinging Air-Jet
,”
Int. J. Therm. Sci.
,
39
(
2
), pp.
236
248
.10.1016/S1290-0729(00)00242-8
12.
Durst
,
F.
,
Heim
,
U.
,
Nsal
,
B.
, and
Kullik
,
G.
,
2003
, “
Mass Flow Rate Control System for Time-Dependent Laminar and Turbulent Flow Investigations
,”
Meas. Sci. Technol.
,
14
(
7
), pp.
893
902
.10.1088/0957-0233/14/7/301
13.
Middelberg
,
G.
, and
Herwig
,
H.
,
2009
, “
Convective Heat Transfer Under Unsteady Impinging Jets: The Effect of the Shape of the Unsteadiness
,”
Heat Mass Transfer
,
45
(
12
), pp.
1519
1532
.10.1007/s00231-009-0527-4
14.
Falck
,
J.
,
Felgemacher
,
C.
,
Rojko
,
A.
,
Liserre
,
M.
, and
Zacharias
,
P.
,
2018
, “
Reliability of Power Electronic Systems: An Industry Perspective
,”
IEEE Ind. Electron. Mag.
,
12
(
2
), pp.
24
35
.10.1109/MIE.2018.2825481
15.
Gabriel
,
O. E.
, and
Huitink
,
D. R.
,
2022
, “
Failure Mechanisms Driven Reliability Models for Power Electronics: A Review
,”
ASME J. Electron. Packaging
,
145
(
2
), p.
020801
.10.1115/1.4055774
16.
Afaynou
,
I.
,
Faraji
,
H.
,
Choukairy
,
K.
,
Arshad
,
A.
, and
Arıcı
,
M.
,
2023
, “
Heat Transfer Enhancement of Phase-Change Materials (PCMs) Based Thermal Management Systems for Electronic Components: A Review of Recent Advances
,”
Int. Commun. Heat Mass Transfer
,
143
, p.
106690
.10.1016/j.icheatmasstransfer.2023.106690
17.
Zuckerman
,
N.
, and
Lior
,
N.
,
2006
, “
Jet Impingement Heat Transfer: Physics, Correlations, and Numerical Modeling
,”
Adv. Heat Transfer
,
39
, pp.
565
631
.10.1016/S0065-2717(06)39006-5
You do not currently have access to this content.