Abstract

A virtual testbed simulation framework is created for the economic, reliability, and lifetime analysis of battery thermal management control strategies in electric vehicles (EVs). The system-level model is created in the MATLAB environment using the Simscape library and custom components are developed as required. A lumped parameter coupled electrothermal model with temperature and state of charge (SOC)-dependent cell parameters is adopted from the literature to characterize battery performance. Suitable cell capacity degradation models are implemented to capture the cycle aging and calendar aging of the battery. The economic benefit of extending the lithium iron phosphate (LFP) battery lifetime by optimal thermal conditioning is weighed against the corresponding energy cost of the operation allowing for the assessment and adoption of economy-conscious strategies under different conditions. Active cooling of the battery using a vapor compression system along with a preconditioning strategy is benchmarked against passive cooling by a radiator for operating cost, battery lifetime, and net cost savings. Active cooling with precooling before fast charging can maintain optimal battery temperature but requires an additional electricity cost of 170–530 $/year, compared to passive cooling. However, the added cost is more than compensated for by the increase in battery lifetime by 1.4–1.9 years leading to a net saving of 140–550 $/year.

References

1.
Yue
,
Q. L.
,
He
,
C. X.
,
Wu
,
M. C.
, and
Zhao
,
T. S.
,
2021
, “
Advances in Thermal Management Systems for Next-Generation Power Batteries
,”
Int. J. Heat Mass Transfer
,
181
, p.
121853
.10.1016/j.ijheatmasstransfer.2021.121853
2.
Wu
,
W.
,
Wang
,
S.
,
Wu
,
W.
,
Chen
,
K.
,
Hong
,
S.
, and
Lai
,
Y.
,
2019
, “
A Critical Review of Battery Thermal Performance and Liquid Based Battery Thermal Management
,”
Energy Convers. Manag.
,
182
, pp.
262
281
.10.1016/j.enconman.2018.12.051
3.
Lin
,
J.
,
Liu
,
X.
,
Li
,
S.
,
Zhang
,
C.
, and
Yang
,
S.
,
2021
, “
A Review on Recent Progress, Challenges and Perspective of Battery Thermal Management System
,”
Int. J. Heat Mass Transfer
,
167
, p.
120834
.10.1016/j.ijheatmasstransfer.2020.120834
4.
Hu
,
X.
,
Xu
,
L.
,
Lin
,
X.
, and
Pecht
,
M.
,
2020
, “
Battery Lifetime Prognostics
,”
Joule
,
4
(
2
), pp.
310
346
.10.1016/j.joule.2019.11.018
5.
Petit
,
M.
,
Prada
,
E.
, and
Sauvant-Moynot
,
V.
,
2016
, “
Development of an Empirical Aging Model for Li-Ion Batteries and Application to Assess the Impact of Vehicle-to-Grid Strategies on Battery Lifetime
,”
Appl. Energy
,
172
, pp.
398
407
.10.1016/j.apenergy.2016.03.119
6.
Wang
,
J.
,
Liu
,
P.
,
Hicks-Garner
,
J.
,
Sherman
,
E.
,
Soukiazian
,
S.
,
Verbrugge
,
M.
,
Tataria
,
H.
,
Musser
,
J.
, and
Finamore
,
P.
,
2011
, “
Cycle-Life Model for Graphite-LiFePO4 Cells
,”
J. Power Sources
,
196
(
8
), pp.
3942
3948
.10.1016/j.jpowsour.2010.11.134
7.
Safari
,
M.
,
Morcrette
,
M.
,
Teyssot
,
A.
, and
Delacourt
,
C.
,
2009
, “
Multimodal Physics-Based Aging Model for Life Prediction of Li-Ion Batteries
,”
J. Electrochem. Soc.
,
156
(
3
), p.
A145
.10.1149/1.3043429
8.
Prada
,
E.
,
Di Domenico
,
D.
,
Creff
,
Y.
,
Bernard
,
J.
,
Sauvant-Moynot
,
V.
, and
Huet
,
F.
,
2013
, “
A Simplified Electrochemical and Thermal Aging Model of LiFePO 4 -Graphite Li-Ion Batteries: Power and Capacity Fade Simulations
,”
J. Electrochem. Soc.
,
160
(
4
), pp.
A616
A628
.10.1149/2.053304jes
9.
Liu
,
Y.
,
Xie
,
K.
,
Pan
,
Y.
,
Wang
,
H.
,
Li
,
Y.
, and
Zheng
,
C.
,
2018
, “
Simplified Modeling and Parameter Estimation to Predict Calendar Life of Li-Ion Batteries
,”
Solid State Ion
,
320
, pp.
126
131
.10.1016/j.ssi.2018.02.038
10.
Grolleau
,
S.
,
Delaille
,
A.
,
Gualous
,
H.
,
Gyan
,
P.
,
Revel
,
R.
,
Bernard
,
J.
,
Redondo-Iglesias
,
E.
, and
Peter
,
J.
,
2014
, “
Calendar Aging of Commercial Graphite/LiFePO4 Cell - Predicting Capacity Fade Under Time Dependent Storage Conditions
,”
J. Power Sources
,
255
, pp.
450
458
.10.1016/j.jpowsour.2013.11.098
11.
Carmeli
,
M. S.
,
Toscani
,
N.
, and
Mauri
,
M.
,
2022
, “
Electrothermal Aging Model of Li-Ion Batteries for Vehicle-to-Grid Services Evaluation
,”
Electronics
,
11
(
7
), p.
1042
.10.3390/electronics11071042
12.
Schmalstieg
,
J.
,
Käbitz
,
S.
,
Ecker
,
M.
, and
Sauer
,
D. U.
,
2014
, “
A Holistic Aging Model for Li(NiMnCo)O2 Based 18650 Lithium-Ion Batteries
,”
J. Power Sources
,
257
, pp.
325
334
.10.1016/j.jpowsour.2014.02.012
13.
Wang
,
J.
,
Purewal
,
J.
,
Liu
,
P.
,
Hicks-Garner
,
J.
,
Soukazian
,
S.
,
Sherman
,
E.
,
Sorenson
,
A.
,
Vu
,
L.
,
Tataria
,
H.
, and
Verbrugge
,
M. W.
,
2014
, “
Degradation of Lithium Ion Batteries Employing Graphite Negatives and Nickel-Cobalt-Manganese Oxide + Spinel Manganese Oxide Positives: Part 1, Aging Mechanisms and Life Estimation
,”
J. Power Sources
,
269
, pp.
937
948
.10.1016/j.jpowsour.2014.07.030
14.
Omar
,
N.
,
Monem
,
M. A.
,
Firouz
,
Y.
,
Salminen
,
J.
,
Smekens
,
J.
,
Hegazy
,
O.
,
Gaulous
,
H.
, et al.,
2014
, “
Lithium Iron Phosphate Based Battery - Assessment of the Aging Parameters and Development of Cycle Life Model
,”
Appl. Energy
,
113
, pp.
1575
1585
.10.1016/j.apenergy.2013.09.003
15.
Sarasketa-Zabala
,
E.
,
Gandiaga
,
I.
,
Rodriguez-Martinez
,
L. M.
, and
Villarreal
,
I.
,
2014
, “
Calendar Ageing Analysis of a LiFePO4/Graphite Cell With Dynamic Model Validations: Towards Realistic Lifetime Predictions
,”
J. Power Sources
,
272
, pp.
45
57
.10.1016/j.jpowsour.2014.08.051
16.
Naumann
,
M.
,
Schimpe
,
M.
,
Keil
,
P.
,
Hesse
,
H. C.
, and
Jossen
,
A.
,
2018
, “
Analysis and Modeling of Calendar Aging of a Commercial LiFePO4/Graphite Cell
,”
J. Energy Storage
,
17
, pp.
153
169
.10.1016/j.est.2018.01.019
17.
Park
,
S.
,
Jang
,
D. S.
,
Lee
,
D. C.
,
Hong
,
S. H.
, and
Kim
,
Y.
,
2019
, “
Simulation on Cooling Performance Characteristics of a Refrigerant-Cooled Active Thermal Management System for Lithium Ion Batteries
,”
Int. J. Heat Mass Transfer
,
135
, pp.
131
141
.10.1016/j.ijheatmasstransfer.2019.01.109
18.
Bamdezh
,
M. A.
, and
Molaeimanesh
,
G. R.
,
2020
, “
Impact of System Structure on the Performance of a Hybrid Thermal Management System for a Li-Ion Battery Module
,”
J. Power Sources
,
457
, p.
227993
.10.1016/j.jpowsour.2020.227993
19.
The MathWorks Inc.
,
2023
, “
MATLAB Version: 9.14 (R2023a)
,”
The MathWorks Inc
.,
Natick, MA
, accessed Jan. 10, 2024, https://www.mathworks.com
20.
The MathWorks Inc.
,
2023
, “
Simulink Version: 10.7 (R2023a)
,”
The MathWorks Inc
.,
Natick, MA
, accessed Jan. 10, 2024, https://www.mathworks.com/help/simulink/
21.
The MathWorks Inc.
,
2023
, “
Simscape Version: 5.5 (R2023a)
,”
The MathWorks Inc
.,
Natick, MA
, accessed Jan. 10, 2024, https://www.mathworks.com/help/simscape/
22.
Lin
,
X.
,
Perez
,
H. E.
,
Mohan
,
S.
,
Siegel
,
J. B.
,
Stefanopoulou
,
A. G.
,
Ding
,
Y.
, and
Castanier
,
M. P.
,
2014
, “
A Lumped-Parameter Electro-Thermal Model for Cylindrical Batteries
,”
J. Power Sources
,
257
, pp.
1
11
.10.1016/j.jpowsour.2014.01.097
23.
Singh
,
S.
,
Olyaei
,
M.
,
Jiang
,
K.
,
Gurumukhi
,
Y.
,
Goodson
,
K.
,
Asheghi
,
M.
, and
Miljkovic
,
N.
,
2023
, “
MATLAB-Simulink-Simscape Model With Simulation Data for EV Battery Thermal Management Strategies
,” Mendeley Data.
24.
Singh
,
S.
,
Jennings
,
M.
,
Katragadda
,
S.
,
Che
,
J.
, and
Miljkovic
,
N.
,
2023
, “
System Design and Analysis Methods for Optimal Electric Vehicle Thermal Management
,”
Appl. Therm. Eng.
,
232
, p.
120990
.10.1016/j.applthermaleng.2023.120990
25.
Singh
,
S.
,
Jennings
,
M.
,
Katragadda
,
S.
,
Che
,
J.
, and
Miljkovic
,
N.
,
2023
, “
MATLAB-Simulink-Simscape Model With Simulation Data for Electric Vehicle Thermal Management System
,” Mendeley Data, v1.
26.
Autonomie Suite
, 2021, “
Autonomie Simulation Tool for Vehicle Dynamics
,”
Argonne National Laboratory
, Lemont, IL, accessed Jan. 10, 2024, https://vms.taps.anl.gov/tools/autonomie/
27.
Maranda
,
W.
,
2015
, “
Capacity Degradation of Lead-Acid Batteries Under Variable-Depth Cycling Operation in Photovoltaic System
,” 22nd International Conference Mixed Design of Integrated Circuits & Systems (
MIXDES
), Torun, Poland, June 25–27, pp.
552
555
.10.1109/MIXDES.2015.7208584
28.
Bryden
,
T. S.
,
Dimitrov
,
B.
,
Hilton
,
G.
,
Ponce de León
,
C.
,
Bugryniec
,
P.
,
Brown
,
S.
,
Cumming
,
D.
, and
Cruden
,
A.
,
2018
, “
Methodology to Determine the Heat Capacity of Lithium-Ion Cells
,”
J. Power Sources
,
395
, pp.
369
378
.10.1016/j.jpowsour.2018.05.084
29.
Amini
,
A.
,
Özdemir
,
T.
,
Ekici
,
Ö.
,
Başlamışlı
,
S. Ç.
, and
Köksal
,
M.
,
2021
, “
A Thermal Model for Li-Ion Batteries Operating Under Dynamic Conditions
,”
Appl. Therm. Eng.
,
185
, p.
116338
.10.1016/j.applthermaleng.2020.116338
30.
Huria
,
T.
,
Ceraolo
,
M.
,
Gazzarri
,
J.
, and
Jackey
,
R.
,
2012
, “
High Fidelity Electrical Model With Thermal Dependence for Characterization and Simulation of High Power Lithium Battery Cells
,”
IEEE International Electric Vehicle Conference
, Greenville, SC, Mar. 4–8, pp.
1
8
.10.1109/IEVC.2012.6183271
31.
Dubarry
,
M.
,
Qin
,
N.
, and
Brooker
,
P.
,
2018
, “
Calendar Aging of Commercial Li-Ion Cells of Different Chemistries – A Review
,”
Curr. Opin. Electrochem.
,
9
, pp.
106
113
.10.1016/j.coelec.2018.05.023
32.
Redondo-Iglesias
,
E.
,
Venet
,
P.
, and
Pelissier
,
S.
,
2018
, “
Calendar and Cycling Ageing Combination of Batteries in Electric Vehicles
,”
Microelectron. Reliab.
,
88–90
, pp.
1212
1215
.10.1016/j.microrel.2018.06.113
33.
U.S. Environmental Protection Agency (EPA)
, 2024, “
Official Website of the United States Environmental Protection Agency, Emission Standards Reference Guide, Schedules
,” U.S. Environmental Protection Agency, Washington, DC, accessed Jan. 10, 2024, https://www.epa.gov/vehicle-and-fuel-emissions-testing/dynamometer-drive-schedules
34.
U.S. Department of Transportation
, 2024, “Highway Statistics 2020,
Federal Highway Administration,”
U.S. Department of Transportation, Washington, DC, accessed Jan. 10, 2024, www.fhwa.dot.gov/policyinformation/statistics/2020/
35.
U.S. Department of Energy
, 2024, “The Official U.S. Government Source for Electric Vehicles, Vehicles Technology Office,”
U.S. Department of Energy
, Washington, DC, accessed Jan. 10, 2024, https://www.energy.gov/eere/vehicles
You do not currently have access to this content.