A new simulator for gas–hydrate slurry stratified flow is presented, which can simulate the flow characteristics, including gas/liquid velocity, liquid holdup, and pressure drop. The simulator includes an inward and outward hydrate growth shell model and two-phase flow hydrodynamic model. The hydrate growth model systematically considers the kinetics and limitations of hydrate formation, namely, the mass– and heat–transfer. The two-phase flow hydrodynamic model is composed of mass and momentum equations for each phase as well as energy balance equations considering the heat generation related to hydrate formation. Thereafter, an inclined pipeline case is simulated using the simulator. The results demonstrate that, once the kinetic requirements for hydrate crystallization are satisfied, hydrates form rapidly during the initial stage and the hydrate formation rate then decreases owing to the limitation of the mass– and heat–transfer. Meanwhile, the hydrate states (formation onset time, formation rate, and volume fraction) as well as flow characteristics of a multiphase system are obtained, providing acceptable results for engineers in the field. Sensitivity analyses of the key hydrate growth shell model parameters are implemented, and the results indicate that the influences of diffusivity and initial water droplet size on the hydrate formation rate are greater than the of the porous parameter.

References

1.
Sloan
,
E. D.
, and
Koh
,
C. A.
,
2007
,
Clathrate Hydrates of Natural Gases
, 3rd ed.,
CRC Press
,
New York
, Chap. 1.
2.
Hammerschmidt
,
T.
,
1934
, “
Formation of Gas Hydrates in Natural Gas Transmission Lines
,”
Ind. Eng. Chem.
,
26
(
8
), pp.
851
855
.
3.
King
,
M. J. S.
,
Fairhurst
,
C. P.
, and
Hill
,
T. J.
,
2001
, “
Solids Transport in Multiphase Flows—Application to High-Viscosity Systems
,”
ASME J. Energ. Resour. Technol.
,
123
(
3
), pp.
200
204
.
4.
Zaghloul
,
J.
,
Adewumi
,
M.
, and
Ityokumbul
,
M. T.
,
2008
, “
Hydrodynamic Modeling of Three-Phase Flow in Production and Gathering Pipelines
,”
ASME J. Energ. Resour. Technol.
,
130
(
4
), p.
043004
.
5.
Bell
,
J. M.
,
Chin
,
Y. D.
, and
Hanrahan
,
S.
,
2005
, “
State of the Art of Ultra Deepwater Production Technologies
,”
Offshore Technology Conference, Houston, TX, May 2–5, Paper No.
OTC-17615-MS
.
6.
Sinquin
,
A.
,
Palermo
,
T.
, and
Peysson
,
Y.
,
2004
, “
Rheological and Flow Properties of Gas Hydrate Suspensions
,”
Oil Gas Sci. Technol.
,
59
(
1
), pp.
41
57
.
7.
Yarveicy
,
H.
,
Ghiasi
,
M. M.
, and
Mohammadi
,
A. H.
,
2018
, “
Determination of the Gas Hydrate Formation Limits to Isenthalpic Joule–Thomson Expansions
,”
Chem. Eng. Res. Des
,
132
, pp.
208
214
.
8.
Lovell
,
D.
, and
Pakulski
,
M.
,
2002
, “
Hydrate Inhibitor in Gas Wells Treated With Two Low Dosage Hydrate Inhibitors
,” SPE Gas Technology Symposium, Calgary, AB, Canada, Apr. 30–May 2,
SPE Paper No.
SPE-75668-MS
.
9.
Frostman
,
L. M.
,
2000
, “
Anti-Agglomerant Hydrate Inhibitors for Prevention of Hydrate Plugs in Deepwater Systems
,” SPE Annual Technical Conference and Exhibition, Dallas, TX, Oct. 1–4,
SPE Paper No.
SPE-63122-MS
.
10.
Yan
,
K. L.
,
Sun
,
C. Y.
,
Chen
,
J.
,
Chen
,
L. T.
,
Shen
,
D. J.
,
Liu
,
B.
,
Jia
,
M. L.
,
Niu
,
M.
,
Lv
,
Y. N.
,
Li
,
N.
,
Song
,
Z. Y.
,
Niu
,
S. S.
, and
Chen
,
G. J.
,
2014
, “
Flow Characteristics and Rheological Properties of Natural Gas Hydrate Slurry in the Presence of Anti-Agglomerant in a Flow Loop Apparatus
,”
Chem. Eng. Sci.
,
106
, pp.
99
108
.
11.
Peysson
,
Y.
,
2005
, “
Collision Process Between Particles in the Transport of Dispersed Hydrates in Production Lines
,”
Fifth International Conference on Gas Hydrates
, Houston, TX, Apr. 30–May 3.
12.
Gundmundsson
,
J. S.
,
2002
, “
Cold Flow Hydrate Technology
,”
Fourth International Conference on Gas Hydrates
, Yokohama, Japan, May 19–23, pp. 912–916.
13.
Turner
,
D.
, and
Talley
,
L.
,
2008
, “
Hydrate Inhibition Via Cold Flow—No Chemicals or Insulation
,”
Sixth International Conference on Gas Hydrates
, Vancouver, QC, Canada, July 6–11.
14.
Chen
,
G. J.
, and
Guo
,
T. M.
,
1998
, “
A New Approach to Gas Hydrate Modeling
,”
Chem. Eng. J.
,
71
(
2
), pp.
145
151
.
15.
Englezos
,
P.
,
Kalogerakis
,
N.
,
Dholabhai
,
P. D.
, and
Bishnoi
,
P. R.
,
1987
, “
Kinetics of Formation of Methane and Ethane Gas Hydrates
,”
Chem. Eng. Sci.
,
42
(
11
), pp.
2647
2658
.
16.
Englezos
,
P.
,
Kalogerakis
,
N.
,
Dholabhai
,
P. D.
, and
Bishnoi
,
P. R.
,
1987
, “
Kinetics of Gas Hydrate Formation From Mixtures of Methane and Ethane
,”
Chem. Eng. Sci.
,
42
(
11
), pp.
2659
2666
.
17.
Jamaluddin
,
A. K. M.
,
Kalogerakis
,
N.
, and
Bishnoi
,
P. R.
,
1991
, “
Hydrate Plugging Problems in Undersea Natural Gas Pipelines Under Shutdown Conditions
,”
J. Pet. Sci. Eng.
,
5
(
4
), pp.
323
335
.
18.
Ma
,
Q. L.
,
Chen
,
G. J.
,
Sun
,
C. Y.
, and
Guo
,
T. M.
,
2005
, “
New Algorithm of Vapor-Liquid-Liquid-Hydrate Multi-Phase Equilibrium Flash Calculation
,”
J. Chem. Ind. Eng. (China)
,
56
(
9
), pp.
1599
1604
.
19.
Shi
,
B. H.
,
Gong
,
J.
,
Sun
,
C. Y.
,
Zhao
,
J. K.
,
Ding
,
Y.
, and
Chen
,
G. J.
,
2011
, “
An Inward and Outward Natural Gas Hydrates Growth Shell Model Considering Intrinsic Kinetics, Mass and Heat Transfer
,”
Chem. Eng. J.
,
171
(
3
), pp.
1308
1316
.
20.
Tuner
,
D. J.
,
Miller
,
K. T.
, and
Sloan
,
E. D.
,
2009
, “
Methane Hydrate Formation and an Inward Growing Shell Model in Water-in-Oil Dispersions
,”
Chem. Eng. Sci.
,
64
(
18
), pp.
3996
4004
.
21.
Yapa
,
P. D.
,
Zheng
,
L.
, and
Chen
,
F. H.
,
2001
, “
A Model for Deepwater Oil/Gas Blowouts
,”
Mar. Pollut. Bull.
,
43
(
7–12
), pp.
234
241
.
22.
Zhao
,
J. K.
,
2005
, “
Study on Flow Properties of Hydrate Slurry in Multiphase Pipeline
,” Ph.D. thesis, China University of Petroleum-Beijing, Beijing, China.
23.
Turner
,
D. J.
,
Kleehammer
,
D. M.
,
Miller
,
K. T.
,
Koh
,
C. A.
,
Sloan
,
E. D.
, and
Talley
,
L. D.
,
2005
, “
Formation of Hydrate Obstructions in Pipelines: Hydrate Particles Development and Slurry Flow
,”
Fifth International Conference on Gas Hydrates
, Houston, TX, Apr. 30–May 3, pp. 1097–1106.
24.
Acikgoz
,
M.
,
Fiarlca
,
E.
, and
Lalley
,
R. T.
,
1992
, “
An Experimental Study of Three-Phase Flow Regimes
,”
Int. J. Multiphas. Flow
,
18
(
3
), pp.
327
336
.
25.
Ghorai
,
S.
,
Suri
,
V.
, and
Nigam
,
K. D. P.
,
2005
, “
Numerical Modeling of Three-Phase Stratified Flow in Pipes
,”
Chem. Eng. Sci.
,
60
(
23
), pp.
6637
6648
.
26.
Lee
,
A. H.
,
1993
, “
Study of Flow Regimes of Transition Oil/Water/Gas Mixtures in Horizontal Pipelines
,”
Fifth International Offshore and Polar Engineering Conference
, Singapore, Paper No. ISOPE-I-93-121.
27.
Khor
,
S. H.
,
Mendes-Tatsis
,
M. A.
, and
Hewitt
,
G. F.
,
1997
, “
One-Dimensional Model of Phase Holdups in Three-Phases Stratified Flow
,”
Int. J. Multiphas. Flow
,
23
(
5
), pp.
885
897
.
28.
Bonizzi
,
M.
, and
Issa
,
R. I.
,
2003
, “
On the Simulation of Three-Phase Slug Flow in Nearly Horizontal Pipes Using the Multi-Fluid Model
,”
Int. J. Multiphas. Flow
,
29
(
11
), pp.
1719
1747
.
29.
Ibraheem
,
S. O.
,
Adewumi
,
M. A.
, and
Savidge
,
J. L.
,
1999
, “
Numerical Simulation of Hydrate Transport in Natural Gas Pipeline
,”
ASME J. Energ. Resour. Technol.
,
120
(
1
), pp.
20
26
.
30.
Andersson
,
V.
, and
Gudmundsson
,
J. S.
,
1999
, “
Transporting Oil and Gas as Hydrate Slurries
,”
BHR Group Conference Series Publication
, Vol.
36
, Edmunds, UK, pp.
181
192
.
31.
Boxall
,
J.
,
Davies
,
S.
,
Nicholas
,
J.
,
Koh
,
C. A.
,
Sloan
,
E. D.
,
Turner
,
D.
, and
Talley
,
L.
,
2008
, “
Hydrate Blockage Potential in an Oil-Dominated System Study Using a Four Inch Flow Loop
,”
Sixth International Conference on Gas Hydrates
, Vancouver, QC, Canada, July 6–10.
32.
Dellecase
,
E.
,
Geraci
,
G.
,
Barrios
,
L.
,
Eatanga
,
D.
,
Domingues
,
R.
, and
Volk
,
M.
,
2008
, “
Hydrate Plugging or Slurry Flow: Effect of Key Variables
,”
Sixth International Conference on Gas Hydrates
, Vancouver, QC, Canada, July 6–10.
33.
Nuland
,
S.
, and
Tande
,
M.
,
2005
, “
Hydrate Slurry Flow Modelling
,”
12th International Conference on Multiphase Production Technology
, Barcelona, Spain, May 25–27, Paper No. BHR-2005-J2.
34.
Pauchard
,
V.
,
Darbouret
,
M.
,
Palermo
,
T.
, and
Peytavy
,
J. L.
,
2007
, “
Gas Hydrate Slurry Flow in a Black Oil. Prediction of Gas Hydrate Particles Agglomeration and Linear Pressure Drop
,”
13th International Conference on Multiphase Production Technology
, Edinburgh, UK, June 13--15, Paper No. BHR-2007-F2.
35.
Peysson
,
Y.
,
Nuland
,
S.
, and
Maurel
,
P.
,
2003
, “
Flow of Hydrates Dispersed in Production Lines
,” SPE Annual Technical Conference and Exhibition, Denver, CO, Dec. 5–8,
SPE Paper No.
SPE-84044-MS
.
36.
Lv
,
X. F.
,
Gong
,
J.
, and
Li
,
W. Q.
,
2012
, “
Experimental Study on Natural Gas Hydrate Slurry Flow
,” SPE Annual Technical Conference and Exhibition, San Antonio, TX, Oct. 8–10,
SPE Paper No.
SPE-158597-MS
.
37.
Lv
,
X. F.
,
Gong
,
J.
,
Li
,
W. Q.
,
Shi
,
B. H.
, and
Yu
,
D.
,
2013
, “
Focused-Beam Reflectance Method Aids Hydrate Blockage Prediction
,”
Oil Gas J.
,
111
(
1
), pp.
99
106
.
38.
Lv
,
X. F.
,
Shi
,
B. H.
,
Wang
,
Y.
, and
Gong
,
J.
,
2013
, “
Study on Gas Hydrate Formation and Hydrate Slurry Flow in Multiphase Transportation System
,”
Energ. Fuel
,
27
(
12
), pp.
7294
7302
.
39.
Sum
,
A. K.
,
Koh
,
C. A.
, and
Sloan
,
E. D.
,
2012
, “
Developing a Comprehensive Understanding and Model of Hydrate in Multiphase Flow: From Laboratory Measurements to Field Applications
,”
Energ. Fuel
,
26
(
7
), pp.
4046
4052
.
40.
Kwon
,
O.
,
Ryou
,
S.
, and
Sung
,
U.
,
2001
, “
Numerical Modeling Study for the Analysis of Transient Flow Characteristics
,”
Korean J. Chem. Eng.
,
18
(
1
), pp.
88
93
.
41.
Gong
,
J.
, and
Zhao
,
J. K.
,
2008
, “
Numerical Simulation of Gas-Hydrate Slurry Two Phase Flow
,”
Sixth International Conference on Gas Hydrates
, Vancouver, BC, Canada, July 6–10.
42.
Gong
,
J.
,
Shi
,
B. H.
, and
Zhao
,
J. K.
,
2010
, “
Natural Gas Hydrate Shell Model in Gas-Slurry Pipeline Flow
,”
J. Nat. Gas Chem.
,
19
(
3
), pp.
261
266
.
43.
Zerpa
,
L. E.
,
Rao
,
I.
,
Aman
,
Z. A.
,
Danielson
,
T. J.
,
Koh
,
C. A.
,
Sloan
,
E. D.
, and
Sum
,
A. K.
,
2013
, “
Multiphase Flow Modelling of Gas Hydrates With a Simple Hydrodynamic Slug Flow Model
,”
Chem. Eng. Sci.
,
99
(
9
), pp.
298
304
.
44.
Rao
,
I.
,
Sum
,
A. K.
,
Koh
,
C. A.
,
Sloan
,
E. D.
, and
Zerpa
,
L. E.
,
2013
, “
Multiphase Flow Modelling of Gas-Water-Hydrate System
,” Offshore Technology Conference, May 6–9, Houston, TX,
OTC Paper No.
OTC-24099-MS
.
45.
Xiao
,
J. J.
,
Shoham
,
O.
, and
Brill
,
J. P.
,
1990
, “
A Comprehensive Mechanistic Model for Two-Phase Flow in Pipeline
,” SPE Annual Technical Conference and Exhibition, New Orleans, LA, Sept. 23–26,
SPE Paper No.
SPE-20631-MS
.
46.
Shoham
,
O.
,
2005
,
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes
,
Society of Petroleum Engineers
,
Richardson, TX
, pp.
75
87
.
47.
Deng
,
D. M.
,
2005
, “
Modeling Gas-Condensate Two-Phase Flow in Pipelines
,” Ph.D. thesis, China University of Petroleum-Beijing, Beijing, China.
48.
Shi
,
B. H.
,
2012
, “
Study on Characteristics of Hydrate Growth and Flow in Gas-Condensate Multiphase Pipelines
,” Ph.D. thesis, China University of Petroleum-Beijing, Beijing, China.
49.
Chen
,
N. H.
,
1979
, “
An Explicit Equation for Friction Factor in Pipe
,”
Ind. Eng. Chem. Fundam.
,
18
(
3
), pp.
296
297
.
50.
Homma
,
S.
,
Ogata
,
S.
,
Koga
,
J.
, and
Matsumoto
,
S.
,
2005
, “
Gas-Solid Reaction Model for a Shrinking Spherical Particle With Unreacted Shrinking Core
,”
Chem. Eng. Sci.
,
60
(
18
), pp.
4971
4980
.
51.
Mori
,
Y. H.
, and
Mochizuki
,
T.
,
1997
, “
Mass Transport Across Clathrate Hydrate Films-a Capillary Permeation Model
,”
Chem. Eng. Sci.
,
52
(
20
), pp.
3613
3616
.
52.
Mochizuki
,
T.
, and
Mori
,
Y. H.
,
2008
, “
Clathrate-Hydrate Film Growth along Water/Hydrate—Former Phase Boundaries: Numerical Analyses of Mass and Heat Transfer to/From a Hydrate Film in Relation to Its Growth
,”
Sixth International Conference on Gas Hydrate
, Vancouver, QC, Canada, July 6–20.
53.
Van der Waals
,
J. H.
, and
Platteeuw
,
J. C.
,
2007
, “
Clathrate Solutions
,”
Advances in Chemical Physics
,
I.
Prigogine
ed., Vol.
2
,
Wiley
,
Hoboken, NJ
, pp.
1
57
.
54.
Peng
,
D. Y.
, and
Robinson
,
D. B.
,
1976
, “
A New Two-Constant Equation of State
,”
Ind. Eng. Chem. Fundam.
,
15
(
1
), pp.
59
64
.
55.
Yarveicy
,
H.
,
Moghaddam
,
A. K.
, and
Ghiasi
,
M. M.
,
2014
, “
Practical Use of Statistical Learning Theory for Modeling Freezing Point Depression of Electrolyte Solutions: LSSVM Model
,”
J. Nat. Gas Sci. Eng.
,
20
, pp.
414
421
.
You do not currently have access to this content.