Abstract

In this study, the effect of inclination on the thermal performance of a shell and tube latent heat storage system (LHSS) is investigated. Due to its practical applicability, a simultaneous charging and discharging (SCD) condition is considered. The SCD process for the LHSS involves the circulation of the hot fluid from one side and at the same time cold fluid from the other side. The inclination angles considered for this study are 0 deg (horizontal), 30 deg, 60 deg, and 90 deg (vertical). The effect of inclination on the temperature distribution at various locations of LHSS, melting behavior, energy stored, exergy efficiency, heat input, and recovery are presented. The experimental results indicate that the orientation of an LHSS has a great impact on the melting behavior and performance of LHSS. The maximum energy stored is obtained for the horizontal (θ = 0 deg) configuration and shows 27.42% higher value than the vertical. This study reveals that during the initial stage, higher melting rate is observed in horizontal configuration due to the efficient buoyancy-induced thermal transport. After attaining the steady-state condition, the energy storage is not significant, and the thermal transport is noted between the hot and cold heat transfer fluids.

References

1.
Hoseini Rahdar
,
M.
,
Emamzadeh
,
A.
, and
Ataei
,
A.
,
2016
, “
A Comparative Study on PCM and Ice Thermal Energy Storage Tank for Air-Conditioning Systems in Office Buildings
,”
Appl. Therm. Eng.
,
96
, pp.
391
399
.
2.
Zhao
,
D.
, and
Tan
,
G.
,
2015
, “
Numerical Analysis of a Shell-and-Tube Latent Heat Storage Unit With Fins for Air-Conditioning Application
,”
Appl. Energy
,
138
, pp.
381
392
.
3.
Lu
,
T. J.
,
2000
, “
Thermal Management of High Power Electronics With Phase Change Cooling
,”
Int. J. Heat Mass Transfer
,
43
(
13
), pp.
2245
2256
.
4.
Markandeyulu
,
T.
,
Krishna Devanuri
,
J.
, and
Kiran Kumar
,
K.
,
2016
, “
On the Suitability of Phase Change Material (PCM) for Thermal Management of Electronic Components
,”
Indian J. Sci. Technol.
,
9
(
S1
), pp.
1
4
.
5.
Ling
,
Z.
,
Zhang
,
Z.
,
Shi
,
G.
,
Fang
,
X.
,
Wang
,
L.
,
Gao
,
X.
,
Fang
,
Y.
,
Xu
,
T.
,
Wang
,
S.
, and
Liu
,
X.
,
2014
, “
Review on Thermal Management Systems Using Phase Change Materials for Electronic Components, Li-Ion Batteries and Photovoltaic Modules
,”
Renewable Sustainable Energy Rev.
,
31
, pp.
427
438
.
6.
Li
,
Y.
,
Mohammed
,
S. Q.
,
Nariman
,
G. S.
,
Aljojo
,
N.
,
Rezvani
,
A.
, and
Dadfar
,
S.
,
2020
, “
Energy Management of Microgrid Considering Renewable Energy Sources and Electric Vehicles Using the Backtracking Search Optimization Algorithm
,”
ASME J. Energy Resour. Technol.
,
142
(
5
), p.
052103
.
7.
Mondal
,
S.
,
2008
, “
Phase Change Materials for Smart Textiles—An Overview
,”
Appl. Therm. Eng.
,
28
(
11–12
), pp.
1536
1550
.
8.
Jeon
,
J.
,
Lee
,
J. H.
,
Seo
,
J.
,
Jeong
,
S. G.
, and
Kim
,
S.
,
2013
, “
Application of PCM Thermal Energy Storage System to Reduce Building Energy Consumption
,”
J. Therm. Anal. Calorim.
,
111
(
1
), pp.
279
288
.
9.
AlZahrani
,
A. A.
, and
Dincer
,
I.
,
2016
, “
Performance Assessment of an Aquifer Thermal Energy Storage System for Heating and Cooling Applications
,”
ASME J. Energy Resour. Technol.
,
138
(
1
), p.
011901
.
10.
Kalapala
,
L.
, and
Devanuri
,
J. K.
,
2019
, “
Parametric Investigation to Assess the Melt Fraction and Melting Time for a Latent Heat Storage Material Based Vertical Shell and Tube Heat Exchanger
,”
Sol. Energy
,
193
, pp.
360
371
.
11.
Sharma
,
S. D.
, and
Sagara
,
K.
,
2007
, “
Latent Heat Storage Materials and Systems : A Review
,”
Int. J. Green Energy
,
2
(
1
), pp.
1
56
.
12.
Salunkhe
,
P. B.
, and
Jaya Krishna
,
D.
,
2017
, “
Investigations on Latent Heat Storage Materials for Solar Water and Space Heating Applications
,”
J. Energy Storage
,
12
, pp.
243
260
.
13.
Kalapala
,
L.
, and
Devanuri
,
J. K.
,
2018
, “
Influence of Operational and Design Parameters on the Performance of a PCM Based Heat Exchanger for Thermal Energy Storage—A Review
,”
J. Energy Storage
,
20
, pp.
497
519
.
14.
Fath
,
H. E. S.
,
1991
, “
Heat Exchanger Performance for Latent Heat Thermal Energy Storage System
,”
Energy Convers. Manage.
,
31
(
2
), pp.
149
155
.
15.
Kibria
,
M. A.
,
Anisur
,
M. R.
,
Mahfuz
,
M. H.
,
Saidur
,
R.
, and
Metselaar
,
I. H. S. C.
,
2014
, “
Numerical and Experimental Investigation of Heat Transfer in a Shell and Tube Thermal Energy Storage System
,”
Int. Commun. Heat Mass Transfer
,
53
, pp.
71
78
.
16.
Esen
,
M.
,
Durmus
,
A.
, and
Durmus
,
A.
,
1998
, “
Geometric Design of Soler-Aided Latent Heat Store Depending on Various Parameters and Phase Change Materials
,”
Sol. Energy
,
62
(
1
), pp.
19
28
.
17.
Avci
,
M.
, and
Yazici
,
M. Y.
,
2013
, “
Experimental Study of Thermal Energy Storage Characteristics of a Paraffin in a Horizontal Tube-in-Shell Storage Unit
,”
Energy Convers. Manage.
,
73
, pp.
271
277
.
18.
Wang
,
W. W.
,
Zhang
,
K.
,
Wang
,
L. B.
, and
He
,
Y. L.
,
2013
, “
Numerical Study of the Heat Charging and Discharging Characteristics of a Shell-and-Tube Phase Change Heat Storage Unit
,”
Appl. Therm. Eng.
,
58
(
1–2
), pp.
542
553
.
19.
Wang
,
Y.
,
Wang
,
L.
,
Xie
,
N.
,
Lin
,
X.
, and
Chen
,
H.
,
2016
, “
Experimental Study on the Melting and Solidification Behavior of Erythritol in a Vertical Shell-and-Tube Latent Heat Thermal Storage Unit
,”
Int. J. Heat Mass Transfer
,
99
, pp.
770
781
.
20.
Akgün
,
M.
,
Aydin
,
O.
, and
Kaygusuz
,
K.
,
2007
, “
Experimental Study on Melting/Solidification Characteristics of a Paraffin as PCM
,”
Energy Convers. Manage.
,
48
(
2
), pp.
669
678
.
21.
Sari
,
A.
, and
Kaygusuz
,
K.
,
2002
, “
Thermal Performance of a Eutectic Mixture of Lauric and Stearic Acids as PCM Encapsulated in the Annulus of Two Concentric Pipes
,”
Sol. Energy
,
72
(
6
), pp.
493
504
.
22.
Murray
,
R. E.
, and
Groulx
,
D.
,
2014
, “
Experimental Study of the Phase Change and Energy Characteristics Inside a Cylindrical Latent Heat Energy Storage System: Part 1 Consecutive Charging and Discharging
,”
Renewable Energy
,
62
, pp.
571
581
.
23.
Kaygusuz
,
K.
,
2010
, “
Phase Change Energy Storage for Solar Heating Systems
,”
Energy Sources
,
25
(
8
), pp.
791
807
.
24.
Öztürk
,
H. H.
,
2005
, “
Experimental Evaluation of Energy and Exergy Efficiency of a Seasonal Latent Heat Storage System for Greenhouse Heating
,”
Energy Convers. Manage.
,
46
(
9–10
), pp.
1523
1542
.
25.
Mahfuz
,
M. H.
,
Anisur
,
M. R.
,
Kibria
,
M. A.
,
Saidur
,
R.
, and
Metselaar
,
I. H. S. C.
,
2014
, “
Performance Investigation of Thermal Energy Storage System With Phase Change Material (PCM) for Solar Water Heating Application
,”
Int. Commun. Heat Mass Transfer
,
57
, pp.
132
139
.
26.
Mosaffa
,
A. H.
,
Garousi Farshi
,
L.
,
Infante Ferreira
,
C. A.
, and
Rosen
,
M. A.
,
2014
, “
Energy and Exergy Evaluation of a Multiple-PCM Thermal Storage Unit for Free Cooling Applications
,”
Renewable Energy
,
68
, pp.
452
458
.
27.
Rahimi
,
M.
,
Ardahaie
,
S. S.
,
Hosseini
,
M. J.
, and
Gorzin
,
M.
,
2020
, “
Energy and Exergy Analysis of an Experimentally Examined Latent Heat Thermal Energy Storage System
,”
Renewable Energy
,
147
, pp.
1845
1860
.
28.
Gong
,
Z. X.
, and
Mujumdar
,
A. S.
,
1996
, “
Exergetic Analysis of Energy Storage Using Multiple Phase-Change Materials
,”
ASME J. Energy Resour. Technol.
,
118
(
3
), pp.
242
248
.
29.
Sari
,
A.
, and
Kaygusuz
,
K.
,
2000
, “
Energy and Exergy Calculations of Latent Heat Energy Storage Systems
,”
Energy Sources
,
22
(
2
), pp.
117
126
.
30.
Rosen
,
M. A.
,
Dincer
,
I.
, and
Pedinelli
,
N.
,
2000
, “
Thermodynamic Performance of Ice Thermal Energy Storage Systems
,”
ASME J. Energy Resour. Technol.
,
122
(
4
), pp.
205
211
.
31.
Seddegh
,
S.
,
Joybari
,
M. M.
,
Wang
,
X.
, and
Haghighat
,
F.
,
2017
, “
Experimental and Numerical Characterization of Natural Convection in a Vertical Shell-and-Tube Latent Thermal Energy Storage System
,”
Sustain. Cities Soc.
,
35
, pp.
13
24
.
32.
Kousha
,
N.
,
Hosseini
,
M. J.
,
Aligoodarz
,
M. R.
,
Pakrouh
,
R.
, and
Bahrampoury
,
R.
,
2017
, “
Effect of Inclination Angle on the Performance of a Shell and Tube Heat Storage Unit—An Experimental Study
,”
Appl. Therm. Eng.
,
112
, pp.
1497
1509
.
33.
Al Siyabi
,
I.
,
Khanna
,
S.
,
Mallick
,
T.
, and
Sundaram
,
S.
,
2019
, “
An Experimental and Numerical Study on the Effect of Inclination Angle of Phase Change Materials Thermal Energy Storage System
,”
J. Energy Storage
,
23
, pp.
57
68
.
34.
Kalapala
,
L.
, and
Devanuri
,
J. K.
,
2020
, “
Energy and Exergy Analyses of Latent Heat Storage Unit Positioned at Different Orientations—An Experimental Study
,”
Energy
,
194
, pp.
1
14
.
35.
Moravej
,
M.
,
Saffarian
,
M. R.
,
Li
,
L. K. B.
,
Doranehgard
,
M. H.
, and
Xiong
,
Q.
,
2020
, “
Experimental Investigation of Circular Flat-Panel Collector Performance With Spiral Pipes
,”
J. Therm. Anal. Calorim.
,
140
(
3
), pp.
1229
1236
.
36.
Moravej
,
M.
,
Vahabzadeh
,
M.
,
Guan
,
Y.
, and
Li
,
L. K. B.
,
2020
, “
Enhancing the Efficiency of a Symmetric Flat-Plate Solar Collector via the Use of Rutile TiO2-Water Nanofluids
,”
Sustain. Energy Technol. Assessments
,
40
, pp.
1
8
.
37.
Murray
,
R. E.
, and
Groulx
,
D.
,
2014
, “
Experimental Study of the Phase Change and Energy Characteristics Inside a Cylindrical Latent Heat Energy Storage System: Part 2 Simultaneous Charging and Discharging
,”
Renewable Energy
,
63
, pp.
724
734
.
38.
Omojaro
,
P.
, and
Breitkopf
,
C.
,
2014
, “
Investigating and Modeling of Simultaneous Charging and Discharging of a PCM Heat Exchanger
,”
Energy Procedia
,
48
, pp.
413
422
.
39.
Omojaro
,
A. P.
, and
Breitkopf
,
C.
,
2017
, “
Study on Solid Liquid Interface Heat Transfer of PCM Under Simultaneous Charging and Discharging (SCD) in Horizontal Cylinder Annulus
,”
Heat Mass Transfer.
,
53
(
7
), pp.
2223
2240
.
40.
Joybari
,
M. M.
,
Haghighat
,
F.
, and
Seddegh
,
S.
,
2017
, “
Numerical Investigation of a Triplex Tube Heat Exchanger With Phase Change Material—Simultaneous Charging and Discharging
,”
Energy Build.
,
139
, pp.
426
438
.
41.
Jaya Krishna
,
D.
, and
Kochar
,
S.
,
2017
, “
The Metallographic Study of Corrosion of Metals With Latent Heat Storage Materials Suitable for Solar Hot Water System
,”
Trans. Indian Ceram. Soc.
,
76
(
2
), pp.
133
141
.
42.
Moffat
,
R. J.
,
1988
, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
,
1
(
1
), pp.
3
17
.
43.
Seddegh
,
S.
,
Wang
,
X.
,
Joybari
,
M. M.
, and
Haghighat
,
F.
,
2017
, “
Investigation of the Effect of Geometric and Operating Parameters on Thermal Behavior of Vertical Shell-and-Tube Latent Heat Energy Storage Systems
,”
Energy
,
137
, pp.
69
82
.
44.
Jegadheeswaran
,
S.
,
Pohekar
,
S. D.
, and
Kousksou
,
T.
,
2010
, “
Exergy Based Performance Evaluation of Latent Heat Thermal Storage System: A Review
,”
Renewable Sustainable Energy Rev.
,
14
(
9
), pp.
2580
2595
.
You do not currently have access to this content.