Abstract

Nowadays, engineers and researchers have deeply perceived the application of nano-scale materials and the associated emerging technology so-called nanotechnology (NT) not only to address the existing challenges in all sciences but also to reshape the future of entire industrial world. Recently, NT has been taken into consideration tremendously for energy applications in both conventional and green types of energies. Particularly in the oil and gas industry (OGI) as the current primary energy source, NT implementation has attracted enormous attentions by researchers and companies due to increasing numerous articles that have been published every year. In this review article, an up-to-date benefits of NT applications in OGI including upstream, midstream, and downstream were highlighted. Besides, the main challenges in oil and gas fields have been discussed to show the potential of NT to overcome the obstacles. Finally, outcomes of several studies were traced in higher efficiency to demonstrate NT application in all OGI sections, and the field trials were summarized as well.

References

1.
Sahu
,
J. N.
,
Karri
,
R. R.
,
Zabed
,
H. M.
,
Shams
,
S.
, and
Qi
,
X.
,
2021
, “
Current Perspectives and Future Prospects of Nano-Biotechnology in Wastewater Treatment
,”
Sep. Purif. Rev.
,
50
(
2
), pp.
139
158
.
2.
Chen
,
L.
,
Cao
,
X.
,
Gao
,
J.
,
He
,
W.
,
Liu
,
J.
,
Wang
,
Y.
,
Zhou
,
X.
,
Shen
,
J.
,
Wang
,
B.
,
He
,
Y.
, and
Tan
,
D.
,
2021
, “
Nitrated Bacterial Cellulose-Based Energetic Nanocomposites as Propellants and Explosives for Military Applications
,”
ACS Appl. Nano Mater.
,
4
(
2
), pp.
1906
1915
.
3.
Hu
,
Y.
,
Chen
,
C.
,
Wen
,
Y.
,
Xue
,
Z.
,
Zhou
,
X.
,
Shi
,
D.
,
Hu
,
G. H.
, and
Xie
,
X.
,
2021
, “
Novel Micro-Nano Epoxy Composites for Electronic Packaging Application: Balance of Thermal Conductivity and Processability
,”
Compos. Sci. Technol.
,
209
, p.
108760
.
4.
Naji
,
S.
,
Zaari
,
H.
,
Al-Ammari
,
A.
,
Benyoussef
,
A.
, and
Ennaoui
,
A.
,
2021
, “
On the Electronic Properties and Performance of New Nano Thick Solar Material Based on GeSe/SnS Hetro-Bilayer
,”
Opt. Quantum Electron.
,
53
(
1
), pp.
1
11
.
5.
Bertero
,
A.
,
Fossati
,
P.
,
Coccini
,
T.
,
Spicer
,
L. J.
, and
Caloni
,
F.
,
2021
, “Application of “Nano” Nutraceuticals in Medicine,”
Nutraceuticals
, 2nd ed.,
R. C.
Gupta
,
R.
Lall
, and
A.
Srivastava
, eds.,
Academic Press
,
Cambridge, MA
, pp.
263
270
.
6.
Saeed
,
N. A.
,
Hamzah
,
I. H.
, and
Mahmood
,
S. I.
,
2021
, “
The Applications of Nano-Medicine in the Breast Cancer Therapy
,”
J. Phys.: Conf. Ser.
,
1853
(
1
), p.
012061
.
7.
Bhalshankar
,
S.
,
2021
,
Application of Nano Technology in Biomedical Engineering
, No. 5658. EasyChair.
8.
Seleiman
,
M. F.
,
Almutairi
,
K. F.
,
Alotaibi
,
M.
,
Shami
,
A.
,
Alhammad
,
B. A.
, and
Battaglia
,
M. L.
,
2021
, “
Nano-Fertilization as an Emerging Fertilization Technique: Why Can Modern Agriculture Benefit From Its Use?
,”
Plants
,
10
(
1
), p.
2
.
9.
Grillo
,
R.
,
Mattos
,
B. D.
,
Antunes
,
D. R.
,
Forini
,
M. M.
,
Monikh
,
F. A.
, and
Rojas
,
O. J.
,
2021
, “
Foliage Adhesion and Interactions With Particulate Delivery Systems for Plant Nanobionics and Intelligent Agriculture
,”
Nano Today
,
37
, p.
101078
.
10.
Nehra
,
M.
,
Dilbaghi
,
N.
,
Marrazza
,
G.
,
Kaushik
,
A.
,
Sonne
,
C.
,
Kim
,
K. H.
, and
Kumar
,
S.
,
2021
, “
Emerging Nanobiotechnology in Agriculture for the Management of Pesticide Residues
,”
J. Hazard. Mater.
,
401
, p.
123369
.
11.
Olabi
,
A. G.
,
Abdelkareem
,
M. A.
,
Wilberforce
,
T.
, and
Sayed
,
E. T.
,
2021
, “
Application of Graphene in Energy Storage Device—A Review
,”
Renewable Sustainable Energy Rev.
,
135
, p.
110026
.
12.
Ritchie
,
H.
, and
Roser
,
M.
,
2020
, “
Energy
”, OurWorldInData.org. Retrieved from https://ourworldindata.org/energy [Online Resource].
13.
Alam
,
H.
, and
Ramakrishna
,
S.
,
2013
, “
A Review on the Enhancement of Figure of Merit From Bulk to Nano-Thermoelectric Materials
,”
Nano Energy
,
2
(
2
), pp.
190
212
.
14.
Raturi
,
A. K.
,
2019
, “
Renewables 2019 Global Status Report
.”
15.
Rogner
,
H.-H.
,
Aguilera
,
R. F.
,
Bertani
,
R.
,
Bhattacharya
,
C.
,
Dusseault
,
M. B.
,
Gagnon
,
L.
,
Haberl
,
H.
, et al
,
2012
, “
Energy Resources and Potentials
.”.
16.
Teggar
,
M.
,
Arıcı
,
M.
,
Mert
,
M. S.
,
Mousavi Ajarostaghi
,
S. S.
,
Niyas
,
H.
,
Tunçbilek
,
E.
, et al
,
2021
, “
A Comprehensive Review of Micro/Nano Enhanced Phase Change Materials
,”
J. Therm. Anal. Calorim.
, pp.
1
28
.
17.
Jacobson
,
M. Z.
,
2009
, “
Review of Solutions to Global Warming, Air Pollution, and Energy Security
,”
Energy Environ. Sci.
,
2
(
2
), pp.
148
173
.
18.
Subalakshmi
,
P.
, and
Sivashanmugam
,
A.
,
2017
, “
CuO Nano Hexagons, an Efficient Energy Storage Material for Li-Ion Battery Application
,”
J. Alloys Compd.
,
690
, pp.
523
531
.
19.
Li
,
Y.
,
Yang
,
J.
, and
Song
,
J.
,
2016
, “
Nano-Energy System Coupling Model and Failure Characterization of Lithium Ion Battery Electrode in Electric Energy Vehicles
,”
Renewable Sustainable Energy Rev.
,
54
, pp.
1250
1261
.
20.
Fraleoni-Morgera
,
A.
, and
Chhikara
,
M.
,
2019
, “
Polymer-Based Nano-Composites for Thermal Insulation
,”
Adv. Eng. Mater.
,
21
(
7
), p.
1801162
.
21.
Manoj Kumar
,
P.
,
Karthick
,
A.
,
Richard
,
S.
,
Vijayakumar
,
M.
,
Michael Joseph Stalin
,
P.
,
Ganesh Kumar
,
D.
, et al
,
2021
, “
Investigating Performance of Solar Photovoltaic Using a Nano Phase Change Material
,”
Mater. Today: Proc.
,
47
, Part 15, pp.
5029
5033
.
22.
Sadique
,
M.
, and
Verma
,
A.
,
2014
, “
Nano Fluid-Based Receivers for Increasing Efficiency of Solar Panels
,”
Int. J. Adv. Mech. Eng.
,
4
, pp.
77
82
.
23.
Wu
,
C.
,
Wang
,
A. C.
,
Ding
,
W.
,
Guo
,
H.
, and
Wang
,
Z. L.
,
2019
, “
Triboelectric Nanogenerator: A Foundation of the Energy for the New Era
,”
Adv. Energy Mater.
,
9
(
1
), p.
1802906
.
24.
Habanjar
,
K. K.
,
2019
,
Preparation and Characterization of Nano/superconductor Composite Materials
,
Beirut Arab University
,
Lebanon
.
25.
Wong
,
K.
, and
Dia
,
S.
,
2017
, “
Nanotechnology in Batteries
,”
ASME J. Energy Resour. Technol.
,
139
(
1
), p.
014001
.
26.
Saleh
,
T. A.
, and
Al-Hammadi
,
S. A.
,
2018
,
Insights Into the Fundamentals and Principles of the Oil and Gas Industry: The Impact of Nanotechnology, in Nanotechnology in Oil and Gas Industries
, Topics in Mining, Metallurgy and Materials Engineering,
Springer
,
Cham
, pp.
1
35
.
27.
Vassiliou
,
M. S.
,
2018
,
Historical Dictionary of the Petroleum Industry
,
Rowman & Littlefield
,
Eashington, DC
.
28.
Inkpen
,
A.
, and
Moffett
,
M. H.
,
2011
,
The Global Oil & Gas Industry: Management, Strategy and Finance
,
PennWell Books, LLC
,
TN
.
29.
Agista
,
M. N.
,
Guo
,
K.
, and
Yu
,
Z.
,
2018
, “
A State-of-the-Art Review of Nanoparticles Application in Petroleum With a Focus on Enhanced Oil Recovery
,”
Appl.Sci.
,
8
(
6
), p.
871
.
30.
Ding
,
H.
,
Zhang
,
N.
,
Zhang
,
Y.
,
Wei
,
M.
, and
Bai
,
B.
,
2019
, “
Experimental Data Analysis of Nanoparticles for Enhanced Oil Recovery
,”
Ind. Eng. Chem. Res.
,
58
(
27
), pp.
12438
12450
.
31.
Alsaba
,
M. T.
,
Al Dushaishi
,
M. F.
, and
Abbas
,
A. K.
,
2020
, “
A Comprehensive Review of Nanoparticles Applications in the Oil and Gas Industry
,”
J. Pet. Explor. Prod. Technol.
,
10
(
4
), pp.
1389
1399
.
32.
Lau
,
H. C.
,
Yu
,
M.
, and
Nguyen
,
Q. P.
,
2017
, “
Nanotechnology for Oilfield Applications: Challenges and Impact
,”
J. Pet. Sci. Eng.
,
157
, pp.
1160
1169
.
33.
Khalil
,
M.
,
Jan
,
B. M.
,
Tong
,
C. W.
, and
Berawi
,
M. A.
,
2017
, “
Advanced Nanomaterials in Oil and Gas Industry: Design, Application and Challenges
,”
Appl. Energy
,
191
, pp.
287
310
.
34.
Singh
,
P.
, and
Bhat
,
S.
,
2006
, “
Nanologging: Use of Nanorobots for Logging
,”
SPE Eastern Regional Meeting
,
Columbus, OH
,
Oct. 11–13
.
35.
Kumar
,
S.
, and
Foroozesh
,
J.
,
2021
,
Emerging Nanotechnologies for Renewable Energy
,
W.
Ahmed
,
M.
Booth
, and
E.
Nourafkan
, eds.,
Elsevier
,
Amsterdam
, pp.
115
134
.
36.
Chapman
,
D.
, and
Trybula
,
W.
,
2012
, “
Meeting the Challenges of Oilfield Exploration Using Intelligent Micro and Nano-Scale Sensors
,”
2012 12th IEEE International Conference on Nanotechnology (IEEE-NANO)
,
Birmingham, UK
,
Aug. 20–23
, IEEE.
37.
Iftikhar
,
F. J.
,
Shah
,
A.
,
Akhter
,
M. S.
,
Kurbanoglu
,
S.
, and
Ozkan
,
S. A.
,
2019
, “Chapter 1 - Introduction to Nano Sensors,”
New Developments in Nanosensors for Pharmaceutical Analysis
,
S. A.
Ozkan
, and
A.
Shah
, eds.,
Academic Press
,
New York
, pp.
1
46
.
38.
Jin
,
L.
,
Yan
,
Z.
,
Zuo
,
L.
, and
Stoleru
,
R.
,
2020
, “
Nano Communication-Based Flow Path Mapping for NanoSensors in Underground Oil Reservoirs
,”
Proceedings of the 7th ACM International Conference on Nanoscale Computing and Communication
,
Virtual Event, USA
,
September 2020
, Association for Computing Machinery, p.
13
.
39.
Tsao
,
Y.-H.
,
Husain
,
R. A.
,
Lin
,
Y. J.
,
Khan
,
I.
,
Chen
,
S. W.
and
Lin
,
Z. H.
,
2019
, “
A Self-Powered Mercury Ion Nanosensor Based on the Thermoelectric Effect and Chemical Transformation Mechanism
,”
Nano Energy
,
62
, pp.
268
274
.
40.
Hwang
,
C.-C.
,
Ruan
,
G.
,
Wang
,
L.
,
Zheng
,
H.
,
Samuel
,
E. L.
,
Xiang
,
C.
,
Lu
,
W.
,
Kasper
,
W.
,
Huang
,
K.
,
Peng
,
Z.
, and
Schaefer
,
Z.
,
2014
, “
Carbon-Based Nanoreporters Designed for Subsurface Hydrogen Sulfide Detection
,”
ACS Appl. Mater. Interfaces
,
6
(
10
), pp.
7652
7658
.
41.
Hwang
,
C.-C.
,
Wang
,
L.
,
Lu
,
W.
,
Ruan
,
G.
,
Kini
,
G. C.
,
Xiang
,
C.
,
Samuel
,
E. L.
,
Shi
,
W.
,
Kan
,
A. T.
,
Wong
,
M. S.
, and
Tomson
,
M. B.
,
2012
, “
Highly Stable Carbon Nanoparticles Designed for Downhole Hydrocarbon Detection
,”
Energy Environ. Sci.
,
5
(
8
), pp.
8304
8309
.
42.
Yang
,
F.
,
Taggart
,
D. K.
, and
Penner
,
R. M.
,
2009
, “
Fast, Sensitive Hydrogen Gas Detection Using Single Palladium Nanowires That Resist Fracture
,”
Nano Lett.
,
9
(
5
), pp.
2177
2182
.
43.
Antony
,
C. E.
,
Praveen
,
S. G.
,
Jayakumar
,
A.
,
Yadav
,
A.
,
Sivakumar
,
N.S.
,
Kamath
,
N.
,
Suma
,
M. N.
,
Kamble
,
V.B.
, and
Jaiswal-Nagar
,
D.
,
2021
, “
Polyvinylpyrrolidone-Stabilized Palladium Nanocrystals as Chemiresistive Sensors for Low-Concentration Hydrogen Gas Detection
,”
ACS Appl. Nano Mater.
,
4
(
2
), pp.
1643
1653
.
44.
Yin
,
X.-T.
,
Lv
,
P.
,
Li
,
J.
,
Jafari
,
A.
,
Wu
,
F. Y.
,
Wang
,
Q.
,
Dastan
,
D.
,
Shi
,
Z.
,
Yu
,
S.
, and
Garmestani
,
H.
,
2020
, “
Nanostructured Tungsten Trioxide Prepared at Various Growth Temperatures for Sensing Applications
,”
J. Alloys Compd.
,
825
, p.
154105
.
45.
Liu
,
I. P.
,
Chang
,
C. H.
,
Chou
,
T. C.
, and
Lin
,
K. W.
,
2019
, “
Ammonia Sensing Performance of a Platinum Nanoparticle-Decorated Tungsten Trioxide Gas Sensor
,”
Sens. Actuators, B
,
291
, pp.
148
154
.
46.
Ryoo
,
S.
,
Rahmani
,
A.R.
,
Yoon
,
K. Y.
,
Prodanovic
,
M.
,
Kotsmar
,
C.
,
Milner
,
T. E.
,
Johnston
,
K. P.
, et al
,
2010
, “
Theoretical and Experimental Investigation of the Motion of Multiphase Fluids Containing Paramagnetic Nanoparticles in Porous Media
,”
SPE Annual Technical Conference and Exhibition
,
Florence, Italy
,
Sept. 19–22
, OnePetro.
47.
Park
,
Y. C.
,
Paulsen
,
J.
,
Nap
,
R. J.
,
Whitaker
,
R. D.
,
Mathiyazhagan
,
V.
,
Song
,
Y.Q.
,
Hürlimann
,
M.
,
Szleifer
,
I.
, and
Wong
,
J. Y.
,
2014
, “
Adsorption of Superparamagnetic Iron Oxide Nanoparticles on Silica and Calcium Carbonate Sand
,”
Langmuir
,
30
(
3
), pp.
784
792
.
48.
Brown
,
K. A.
,
Vassiliou
,
C. C.
,
Issadore
,
D.
,
Berezovsky
,
J.
,
Cima
,
M. J.
, and
Westervelt
,
R. M.
,
2010
, “
Scaling of Transverse Nuclear Magnetic Relaxation Due to Magnetic Nanoparticle Aggregation
,”
J. Magn. Magn. Mater.
,
322
(
20
), pp.
3122
3126
.
49.
Liu
,
H.
,
Jin
,
X.
, and
Ding
,
B.
,
2016
, “
Application of Nanotechnology in Petroleum Exploration and Development
,”
Pet. Explor. Dev.
,
43
(
6
), pp.
1107
1115
.
50.
Guiqing
,
Z.
, and
Lianshan
,
M.
,
2012
, “
Eye-Catching Research of Reservoir Nano-Sensors
,”
Well Logging Technol.
,
36
(
6
), pp.
547
550
.
51.
Al-Shehri
,
A. A.
,
Ellis
,
E. S.
,
Felix Servin
,
J. M.
,
Kosynkin
,
D. V.
,
Kanj
,
M. Y.
, and
Schmidt
,
H. K.
,
2013
, “
Illuminating the Reservoir: Magnetic NanoMappers
,”
SPE Middle East Oil and Gas Show and Conference
,
Manama, Bahrain
,
Mar. 10–13
.
52.
Yang
,
H.
,
Zhuang
,
Y.
,
Sun
,
Y.
,
Dai
,
A.
,
Shi
,
X.
,
Wu
,
D.
,
Li
,
F.
,
Hu
,
H.
, and
Yang
,
S.
,
2011
, “
Targeted Dual-Contrast T1- and T2-Weighted Magnetic Resonance Imaging of Tumors Using Multifunctional Gadolinium-Labeled Superparamagnetic Iron Oxide Nanoparticles
,”
Biomaterials
,
32
(
20
), pp.
4584
4593
.
53.
Piantanida
,
M.
,
Veneziani
,
M.
,
Fresca Fantoni
,
R.
,
Mickelson
,
W.
,
Milgrome
,
O.
,
Sussman
,
A.
,
Zhou
,
Q.
, et al
,
2013
, “
An Innovative Wireless H2S Sensor Based on Nanotechnology to Improve Safety in Oil & Gas Facilities
,”
SPE Offshore Europe Oil and Gas Conference and Exhibition
,
Aberdeen, UK
,
Sept. 3–6
, OnePetro.
54.
Cassidy
,
M. C.
,
Chan
,
H. R.
,
Ross
,
B. D.
,
Bhattacharya
,
P. K.
, and
Marcus
,
C. M.
,
2013
, “
In Vivo Magnetic Resonance Imaging of Hyperpolarized Silicon Particles
,”
Nat. Nanotechnol.
,
8
(
5
), pp.
363
368
.
55.
El-Diasty
,
A. I.
, and
Ragab
,
A. M. S.
,
2013
, “
Applications of Nanotechnology in the Oil & Gas Industry: Latest Trends Worldwide & Future Challenges in Egypt
,”
North Africa Technical Conference and Exhibition
,
Cairo, Egypt
,
Apr. 15–17
, Society of Petroleum Engineers.
56.
Turkenburg
,
D.
,
Chin
,
P.
, and
Fischer
,
H.
,
2012
, “
Use of Modified Nanoparticles in Oil and Gas Reservoir Management
,”
SPE International Oilfield Nanotechnology Conference and Exhibition
,
Noordwijk, The Netherlands
,
June 12–14
, OnePetro.
57.
Department of Petroleum Engineering
,
2005
,
Drilling Engineering
,
Heriot-Watt University
,
Edinburgh, Scotland
.
58.
Mao
,
H.
,
Qiu
,
Z.
,
Shen
,
Z.
, and
Huang
,
W.
,
2015
, “
Hydrophobic Associated Polymer Based Silica Nanoparticles Composite With Core–Shell Structure as a Filtrate Reducer for Drilling Fluid at Ultra-High Temperature
,”
J. Pet. Sci. Eng.
,
129
, pp.
1
14
.
59.
Abdo
,
J.
, and
Haneef
,
M.
,
2012
, “
Nano-Enhanced Drilling Fluids: Pioneering Approach to Overcome Uncompromising Drilling Problems
,”
ASME J. Energy Resour. Technol.
,
134
(
1
), p.
014501
.
60.
Mohammadi
,
M.
, and
Mahani
,
H.
,
2020
, “
Insights Into the Pore-Scale Mechanisms of Formation Damage Induced by Drilling Fluid and Its Control by Silica Nanoparticles
,”
Energy Fuels
,
34
(
6
), pp.
6904
6919
.
61.
Sadeghalvaad
,
M.
, and
Sabbaghi
,
S.
,
2015
, “
The Effect of the TiO2/Polyacrylamide Nanocomposite on Water-Based Drilling Fluid Properties
,”
Powder Technol.
,
272
, pp.
113
119
.
62.
Sedaghatzadeh
,
M.
,
Khodadadi
,
A.
, and
Tahmasebi Birgani
,
M. R.
,
2012
, “
An Improvement in Thermal and Rheological Properties of Water-Based Drilling Fluids Using Multiwall Carbon Nanotube (MWCNT)
,”
Iran. J. Oil Gas Sci. Technol.
,
1
(
1
), pp.
55
65
.
63.
Akhtarmanesh
,
S.
,
Shahrabi
,
M. J. A.
, and
Atashnezhad
,
A.
,
2013
, “
Improvement of Wellbore Stability in Shale Using Nanoparticles
,”
J. Pet. Sci. Eng.
,
112
, pp.
290
295
.
64.
Taraghikhah
,
S.
,
Kalhor Mohammadi
,
M.
, and
Tahmasbi Nowtaraki
,
K.
,
2015
, “
Multifunctional Nanoadditive in Water Based Drilling Fluid for Improving Shale Stability
,”
International Petroleum Technology Conference
,
Doha, Qatar
,
Dec. 6–9
.
65.
Ragab
,
A. S.
, and
Noah
,
A.
,
2014
, “
Reduction of Formation Damage and Fluid Loss Using Nano-Sized Silica Drilling Fluids
,”
J. Pet. Technol.
,
2
, pp.
75
88
.
66.
Huang
,
X.
,
Shen
,
H.
,
Sun
,
J.
,
Lv
,
K.
,
Liu
,
J.
,
Dong
,
X.
, and
Luo
,
S.
,
2018
, “
Nanoscale Laponite as a Potential Shale Inhibitor in Water-Based Drilling Fluid for Stabilization of Wellbore Stability and Mechanism Study
,”
ACS Appl. Mater. Interfaces
,
10
(
39
), pp.
33252
33259
.
67.
Amanullah
,
M.
, and
Al-Tahini
,
A. M.
,
2009
, “
Nano-Technology—Its Significance in Smart Fluid Development for Oil and Gas Field Application
,”
SPE Saudi Arabia Section Technical Symposium
,
Al-Khobar, Saudi Arabia
,
May 9–11
, Society of Petroleum Engineers.
68.
Roy
,
S.
, and
Cooper
,
G. A.
,
1993
, “
Prevention of Bit Balling in Shales: Some Preliminary Results
,”
SPE Drill. Complet.
,
8
(
3
), pp.
195
200
.
69.
AlBajalan
,
A. R.
, and
Haias
,
H.
,
2021
, “
Evaluation the Performance of Conventional Water-Based Mud Characteristics by Applying Zinc Oxide and Silica Dioxide Nanoparticles Materials for a Selected Well in the Kurdistan/Iraq
,”
Polytechnic J.
70.
Perumalsamy
,
J.
,
Gupta
,
P.
, and
Sangwai
,
J. S.
,
2021
, “
Performance Evaluation of Esters and Graphene Nanoparticles as an Additives on the Rheological and Lubrication Properties of Water-Based Drilling Mud
,”
J. Pet. Sci. Eng.
,
204
, p.
108680
.
71.
Wu
,
H.
,
Zhu
,
L. N.
,
Yue
,
W.
,
Fu
,
Z. Q.
, and
Kang
,
J.J.
,
2019
, “
Wear-Resistant and Hydrophobic Characteristics of PTFE/CF Composite Coatings
,”
Prog. Org. Coat.
,
128
, pp.
90
98
.
72.
Tomar
,
M.
,
Verma
,
A.
, and
Jaiswal
,
A.
,
2019
, “
Torque and Drag Analysis in ERD Wells
,”
Int. J. Manage. IT Eng.
,
9
(
6
), pp.
39
53
.
73.
Carden
,
R. S.
, and
Grace
,
R. D.
,
2007
,
Horizontal and Directional Drilling
,
OGCI/PetroSkills
,
Tulsa, OK
.
74.
Jabrayilov
,
E.
,
2014
, “
Friction Reduction by Using Nanoparticles in Oil-Based Mud
,”
MS thesis
,
Institutt for petroleumsteknologi og anvendt geofysikk
.
75.
Alvi
,
M. A. A.
,
Belayneh
,
M.
,
Fjelde
,
K. K.
,
Saasen
,
A.
, and
Bandyopadhyay
,
S.
,
2021
, “
Effect of Hydrophobic Iron Oxide Nanoparticles on the Properties of Oil-Based Drilling Fluid
,”
ASME J. Energy Resour. Technol.
,
143
(
4
), p.
043001
.
76.
Aftab
,
A.
,
Ali
,
M.
,
Arif
,
M.
,
Panhwar
,
S.
,
Saady
,
N. M. C.
,
Al-Khdheeawi
,
E. A.
,
Mahmoud
,
O.
,
Ismail
,
A. R.
,
Keshavarz
,
A.
, and
Iglauer
,
S.
,
2020
, “
Influence of Tailor-Made TiO2/API Bentonite Nanocomposite on Drilling Mud Performance: Towards Enhanced Drilling Operations
,”
Appl. Clay Sci.
,
199
, p.
105862
.
77.
Wrobel
,
S.
, and
Belayneh
,
M.
,
2017
, “
The Effect Of MoS2 And Graphene Nanoparticles on the Properties and Performance of Polymer/Salt Treated Bentonite Drilling Fluid
,”
Int. J. Nanosci. Nanotechnol.
,
8
(
1
), pp.
59
71
.
78.
Aliyu
,
F.
,
Al-Shaboti
,
M.
,
Garba
,
Y.
,
Sheltami
,
T.
,
Barnawi
,
A.
, and
Morsy
,
M.A.
,
2015
, “
Hydrogen Sulfide (H2S) Gas Safety System for Oil Drilling Sites Using Wireless Sensor Network
,”
Procedia Comput. Sci.
,
63
, pp.
499
504
.
79.
Khorshidia
,
S.
,
Sabbaghia
,
S.
, and
Saboorib
,
R.
,
2020
, “
Removal of Hydrogen Sulfide From Water-Based Drilling Fluid Using Titania/Carbon Nanotubes Nano-Hybrid: Optimization, Kinetics, and Isotherms
,”
Desalin. Water Treat.
,
200
, pp.
154
166
.
80.
Sayyadnejad
,
M.
,
Ghaffarian
,
H.
, and
Saeidi
,
M.
,
2008
, “
Removal of Hydrogen Sulfide by Zinc Oxide Nanoparticles in Drilling Fluid
,”
Int. J. Environ. Sci. Technol.
,
5
(
4
), pp.
565
569
.
81.
Smithson
,
T.
,
2016
, "
HPHT wells
." Oilfield Review.
82.
Shadravan
,
A.
, and
Amani
,
M.
,
2012
, “
HPHT 101–What Petroleum Engineers and Geoscientists Should Know About High Pressure High Temperature Wells Environment
,”
Energy Sci. Eng.
,
4
(
2
), pp.
36
60
.
83.
Ali
,
J. A.
,
Kalhury
,
A. M.
,
Sabir
,
A. N.
,
Ahmed
,
R. N.
,
Ali
,
N. H.
, and
Abdullah
,
A. D.
,
2020
, “
A state-of-the-Art Review of the Application of Nanotechnology in the Oil and Gas Industry With a Focus on Drilling Engineering
,”
J. Pet. Sci. Eng.
,
191
, p.
107118
.
84.
Ali
,
A. A.
,
2020
, “
Nanotechnology in Civil Engineering Construction
,”
Int. J Struct. Civ. Eng. Res.
,
9
(
1
), pp.
87
90
.
85.
Pan
,
Y.
,
Shen
,
Y.
, and
Sahoo
,
P. K.
,
2016
, “
Effect of Nano-MoS2 Particles on Properties of Micro-Arc Oxidation Coating Prepared on the Surface of Aluminum Alloy Drill Pipe for Offshore Platform
,”
International Conference on Offshore Mechanics and Arctic Engineering
,
Busan, South Korea
,
June 19–24
.
86.
Gao
,
F.
,
Du
,
A.
,
Ma
,
R.
,
Lv
,
C.
,
Yang
,
H.
,
Fan
,
Y.
,
Zhao
,
X.
,
Wu
,
J.
, and
Cao
,
X.
,
2020
, “
Improved Corrosion Resistance of Acrylic Coatings Prepared With Modified MoS2 Nanosheets
,”
Colloids Surf., A
,
587
, p.
124318
.
87.
Steffi
,
A. P.
,
Balaji
,
R.
,
Chen
,
S. M.
,
Prakash
,
N.
, and
Narendhar
,
C.
,
2021
, “
Rational Construction of SiO2/MoS2/TiO2 Composite Nanostructures for Anti-Biofouling and Anti-Corrosion Applications
,”
ChemistrySelect
,
6
(
5
), pp.
917
927
.
88.
Ford
,
R.
,
2012
,
Optimized Drillbit Design Cuts Cost, Time: Case Studies From Offshore Basins Around the World
, Vol.
72
, No. 7,
Offshore
,
Conroe, TX
.
89.
Chakraborty
,
S.
,
Agrawal
,
G.
,
DiGiovanni
,
A.
, and
Scott
,
D.
,
2012
, “
The Trick Is the Surface—Functionalized Nanodiamond PDC Technology
,”
SPE International Oilfield Nanotechnology Conference and Exhibition
,
Noordwijk, The Netherlands
,
June 12–14
.
90.
Sengupta
,
S.
, and
Kumar
,
A.
,
2013
, “
Nano-Ceramic Coatings—A Means of Enhancing Bit Life and Reducing Drill String Trips
,”
IPTC 2013: International Petroleum Technology Conference
,
Beijing, China
,
Mar. 26–28
.
91.
Das
,
S.
,
Chandrasekaran
,
M.
, and
Samanta
,
S.
,
2018
, “
Comparison of Mechanical Properties of AA6061 Reinforced With (SiC/B4C) Micro/Nano Ceramic Particle Reinforcements
,”
Mater. Today: Proc.
,
5
(
9, Part 3
), pp.
18110
18119
.
92.
Nikitin
,
A.
, and
Korjik
,
M.
,
2012
, “
An Impact of Nanotechnology on the Next Generation of Neutron Porosity LWD Tools
,”
SPE International Oilfield Nanotechnology Conference and Exhibition
,
Noordwijk, The Netherlands
,
June 12–14
.
93.
Hajiabadi
,
S. H.
,
Bedrikovetsky
,
P.
,
Mahani
,
H.
,
Khoshsima
,
A.
,
Aghaei
,
H.
,
Kalateh-Aghamohammadi
,
M.
, and
Habibi
,
S.
,
2020
, “
Effects of Surface Modified Nanosilica on Drilling Fluid and Formation Damage
,”
J. Pet. Sci. Eng.
,
194
, p.
107559
.
94.
Alsaba
,
M. T.
,
Al Dushaishi
,
M. F.
, and
Abbas
,
A. K.
,
2020
, “
Application of Nano Water-Based Drilling Fluid in Improving Hole Cleaning
,”
SN Appl. Sci.
,
2
(
5
), p.
905
.
95.
Kang
,
Y.
,
She
,
J.
,
Zhang
,
H.
,
You
,
L.
, and
Song
,
M.
,
2016
, “
Strengthening Shale Wellbore With Silica Nanoparticles Drilling Fluid
,”
Petroleum
,
2
(
2
), pp.
189
195
.
96.
Li
,
H.
,
Lv
,
K.
,
Huang
,
X.
,
Lu
,
Z.
, and
Dong
,
X.
,
2020
, “
The Synthesis of Polymeric Nanospheres and the Application as High-Temperature Nano-Plugging Agent in Water Based Drilling Fluid
,”
Front. Chem.
,
8
, p.
247
.
97.
Mao
,
L.
,
Cai
,
M.
,
Liu
,
Q.
,
Wang
,
X.
,
Fan
,
Y.
,
He
,
Y.
, and
Wang
,
G.
,
2019
, “
Effects of Nano-SiO2 Addition in Drilling Fluid on Wear Behavior of 2Cr13 Steel Casing
,”
Tribol. Lett.
,
68
(
1
), p.
10
.
98.
Khalil
,
M.
,
Amanda
,
A.
,
Yunarti
,
R. T.
,
Jan
,
B. M.
, and
Irawan
,
S.
,
2020
, “
Synthesis and Application of Mesoporous Silica Nanoparticles as Gas Migration Control Additive in Oil and Gas Cement
,”
J. Pet. Sci. Eng.
,
195
, p.
107660
.
99.
Thakkar
,
A.
,
Raval
,
A.
,
Chandra
,
S.
,
Shah
,
M.
, and
Sircar
,
A.
,
2020
, “
A Comprehensive Review of the Application of Nano-Silica in Oil Well Cementing
,”
Petroleum
,
6
(
2
), pp.
123
129
.
100.
Kassem
,
Y. A.
,
Hassan
,
M. M.
,
El-Atrache
,
B. J.
,
Ahmad
,
M. A.
,
Al Kindi
,
R. K.
,
Alwahedi
,
K. A.
,
Al Marzooqi
,
A. M. M.
, et al
,
2021
, “
New Approach for Abandon and Side Track Cement Plugs in Long & High Deviated Wells
,”
SPE/IADC Middle East Drilling Technology Conference and Exhibition
,
Abu Dhabi, UAE
,
May 25–27
, OnePetro.
101.
Kamali
,
M.
,
Khalifeh
,
M.
,
Eid
,
E.
, and
Saasen
,
A.
,
2021
, “
Experimental Study of Hydraulic Sealability and Shear Bond Strength of Cementitious Barrier Materials
,”
ASME J. Energy Resour. Technol.
,
144
(
2
), p.
023007
.
102.
Santra
,
A. K.
,
Boul
,
P.
, and
Pang
,
X.
,
2012
, “
Influence of Nanomaterials in Oilwell Cement Hydration and Mechanical Properties
,”
SPE International Oilfield Nanotechnology Conference and Exhibition
,
Noordwijk, The Netherlands
,
June 12–14
, Society of Petroleum Engineers.
103.
van Kleef
,
R. P. A. R.
, and
van Vliet
,
J. P. M.
,
1993
, “
Improving the Reliability of Cement-Setting-Time Tests by Taking Into Account the Influence of Shear
,”
SPE Drill. Complet.
,
8
(
1
), pp.
51
56
.
104.
Soltanian
,
H.
, and
Mortazavi
,
A. R.
,
2016
, “
The Use of Nanoaccelerator in Cement Slurries in Low Temperature Well Conditions (Research Note).
J. Pet. Sci. Technol
.
105.
Rahman
,
M. K.
,
Amer
,
S. A.
, and
Al-Majed
,
A. A.
,
2015
, “
Portland Cement Type-G with Nanosilica Additive for High Pressure-High Temperature Applications
,”
Google Patents
.
U.S. Patent Application No. 14/723,398
, Patent No. US20140332217A1.
106.
Supe
,
J.
, and
Gupta
,
M.
,
2014
, “
Role of Heat of Hydration in Attaining Early Strength Gain of Cement in Concrete
,”
Int. J. Pure Appl. Sci. Technol.
,
3
(
2
), pp.
94
106
.
107.
Abbas
,
Z. H.
, and
Majdi
,
H. S.
,
2017
, “
Study of Heat of Hydration of Portland Cement Used in Iraq
,”
Case Stud. Constr. Mater.
,
7
, pp.
154
162
.
108.
Soltanian
,
H.
,
Khalokakaie
,
R.
,
Ataei
,
M.
, and
Kazemzadeh
,
E.
,
2015
, “
Fe2O3 Nanoparticles Improve the Physical Properties of Heavy-Weight Wellbore Cements: A Laboratory Study
,”
J. Nat. Gas Sci. Eng.
,
26
, pp.
695
701
.
109.
Khoshakhlagh
,
A.
,
Nazari
,
A.
, and
Khalaj
,
G.
,
2012
, “
Effects of Fe2O3 Nanoparticles on Water Permeability and Strength Assessments of High Strength Self-Compacting Concrete
,”
J. Mater. Sci. Technol.
,
28
(
1
), pp.
73
82
.
110.
Ershadi
,
V.
,
Ebadi
,
T.
,
Rabani
,
A. R.
,
Ershadi
,
L.
, and
Soltanian
,
H.
,
2011
, “
The Effect of Nanosilica on Cement Matrix Permeability in Oil Well to Decrease the Pollution of Receptive Environment
,”
Int. J. Environ. Sci. Dev.
,
2
(
2
), p.
128
.
111.
Goyal
,
S.
,
Joshi
,
P.
,
Singh
,
R.
, and
Rohan
,
2021
, “
Applications and Role of Nano-Silica Particles on Altering the Properties and Their Usage for Oil Well Cementing
,”
Mater. Today: Proc.
,
46
, Part 20, pp.
10681
10686
.
112.
Calvert
,
D. J.
, and
Smith
,
D. K.
,
1990
, “
API Oilwell Cementing Practices
,”
Offshore Technology Conference
,
Houston, TX
,
May 7–10
.
113.
Carney
,
L.
,
1974
, “
Cement Spacer Fluid
,”
J. Pet. Technol.
,
26
(
8
), pp.
856
858
.
114.
Zhang
,
Z.
,
Scherer
,
G. W.
, and
Prud’homme
,
R. K.
,
2020
, “
Contamination of Oil-Well Cement With Conventional and Microemulsion Spacers
,”
SPE J.
,
25
(
6
), pp.
3002
3016
.
115.
Maserati
,
G.
,
Daturi
,
E.
,
Del Gaudio
,
L.
,
Belloni
,
A.
,
Bolzoni
,
S.
,
Lazzari
,
W.
, and
Leo
,
G.
,
2010
, “
Nano-Emulsions as Cement Spacer Improve the Cleaning of Casing Bore During Cementing Operations
,”
SPE Annual Technical Conference and Exhibition
,
Florence, Italy
,
Sept. 19–22
.
116.
Cracolici
,
F.
,
Del Gaudio
,
L.
,
Braccalenti
,
E.
,
Belloni
,
A.
,
Cherri
,
R.
, and
Crudeli
,
G.
,
2019
, “
Nanoemulsions as Innovative Spacers for Cement Packer Applications in Offshore Production Optimization
,”
Offshore Mediterranean Conference and Exhibition
,
Ravenna, Italy
,
Mar. 27–29
.
117.
Meng
,
R.
,
Wang
,
C.
, and
Shen
,
Z.
,
2020
, “
Optimization and Characterization of Highly Stable Nanoemulsion for Effective Oil-Based Drilling Fluid Removal
,”
SPE J.
,
25
(
3
), pp.
1259
1271
.
118.
Ahmed
,
S.
,
Salehi
,
S.
, and
Ezeakacha
,
C.
,
2020
, “
Review of Gas Migration and Wellbore Leakage in Liner Hanger Dual Barrier System: Challenges and Implications for Industry
,”
J. Nat. Gas Sci. Eng.
,
78
, p.
103284
.
119.
Vrålstad
,
T.
,
Saasen
,
A.
,
Fjær
,
E.
,
Øia
,
T.
,
Ytrehus
,
J. D.
, and
Khalifeh
,
M.
,
2019
, “
Plug & Abandonment of Offshore Wells: Ensuring Long-Term Well Integrity and Cost-Efficiency
,”
J. Pet. Sci. Eng.
,
173
, pp.
478
491
.
120.
Mohammed
,
A. S.
,
2018
, “
Vipulanandan Models to Predict the Electrical Resistivity, Rheological Properties and Compressive Stress-Strain Behavior of Oil Well Cement Modified With Silica Nanoparticles
,”
Egypt. J. Pet.
,
27
(
4
), pp.
1265
1273
.
121.
Vipulanandan
,
C.
,
Mohammed
,
A.
, and
Samuel
,
R.
,
2018
, “
Fluid Loss Control in Smart Bentonite Drilling Mud Modified With Nanoclay and Quantified With Vipulanandan Fluid Loss Model
,”
Offshore Technology Conference
,
Houston, TX
,
Apr. 30–May 3
.
122.
Broni-Bediako
,
E.
, and
Naatu
,
F. M. I.
,
2021
, “
Experimental Evaluation of the Performance of Fresh Nano Zeolite as an Oil Well Cement Additive
,”
J. Pet. Sci. Eng.
,
5
(
1
), pp.
1
12
.
123.
Bayanak
,
M.
,
Zarinabadi
,
S.
,
Shahbazi
,
K.
, and
Azimi
,
A.
,
2020
, “
Effects of Nano Silica on Oil Well Cement Slurry Characteristics and Control of Gas Channeling
,”
S. Afr. J. Chem. Eng.
,
34
, pp.
11
25
.
124.
Schechter
,
R. S.
,
1992
, “
Oil Well Stimulation
,” United States.
125.
Osiptsov
,
A. A.
,
2017
, “
Fluid Mechanics of Hydraulic Fracturing: A Review
,”
J. Pet. Sci. Eng.
,
156
, pp.
513
535
.
126.
Gandossi
,
L.
, and
Von Estorff
,
U.
,
2013
, “
An Overview of Hydraulic Fracturing and Other Formation Stimulation Technologies for Shale Gas Production
,”
Eur. Commisison Jt. Res. Cent. Tech. Rep.
, p.
26347
.
127.
Nasr-El-Din
,
H. A.
, and
Samuel
,
M. M.
,
2007
, “
Lessons Learned From Using Viscoelastic Surfactants in Well Stimulation
,”
SPE Prod. Oper.
,
22
(
1
), pp.
112
120
.
128.
Crews
,
J. B.
, and
Gomaa
,
A. M.
,
2012
, “
Nanoparticle-Associated Surfactant Micellar Fluids: An Alternative to Crosslinked Polymer Systems
,”
SPE International Oilfield Nanotechnology Conference and Exhibition
,
Noordwijk, The Netherlands
,
June 12–14
.
129.
Huang
,
T.
, and
Crews
,
J. B.
,
2008
, “
Nanotechnology Applications in Viscoelastic Surfactant Stimulation Fluids
,”
SPE Prod. Oper.
,
23
(
4
), pp.
512
517
.
130.
Crews
,
J. B.
,
Huang
,
T.
, and
Wood
,
W. R.
,
2008
, “
New Technology Improves Performance of Viscoelastic Surfactant Fluids
,”
SPE Drill. Complet.
,
23
(
1
), pp.
41
47
.
131.
Mpelwa
,
M.
,
Zheng
,
Y.
,
Tang
,
S.
,
Pu
,
M.
, and
Jin
,
L.
,
2020
, “
Performance Optimization for the Viscoelastic Surfactant Using Nanoparticles for Fracturing Fluids
,”
Chem. Eng. Commun.
,
207
(
10
), pp.
1474
1482
.
132.
Amani
,
M.
, and
Nguyen
,
N. T.
,
2015
, “
An Overview of Methods to Mitigate Condensate Banking in Retrograde Gas Reservoirs
,”
Adv. Pet. Explor. Dev.
,
9
(
2
), pp.
1
6
.
133.
Fan
,
L.
,
Harris
,
B.W.
,
Jamaluddin
,
A.
,
Kamath
,
J.
,
Mott
,
R.
,
Pope
,
G. A.
,
Shandrygin
,
A.
, et al
,
2005
, “
Understanding Gas-Condensate Reservoirs
,”
Oilfield Rev.
,
17
(
4
), pp.
14
27
.
134.
Wu
,
J.
,
Qun
,
L. E. I.
,
Xiong
,
C.
,
Guangqiang
,
C.
,
Zhang
,
J.
,
Jun
,
L. I.
,
Jin
,
F.
,
Jian
,
T. A. N.
,
Tianjing
,
A. I.
,
Nan
,
L. I.
and
Min
,
J. I. A.
,
2016
, “
A Nano-Particle Foam Unloading Agent Applied in Unloading Liquid of Deep Gas Well
,”
Pet. Explor. Dev.
,
43
(
4
), pp.
695
700
.
135.
Pooladi-Darvish
,
M.
,
2004
, “
Gas Production From Hydrate Reservoirs and Its Modeling
,”
J. Pet. Technol.
,
56
(
06
), pp.
65
71
.
136.
Bhatia
,
K.
, and
Chacko
,
L.
,
2011
, “
Ni-Fe Nanoparticles: An Innovative Approach for Recovery of Hydrates
,”
SPE EUROPEC/EAGE Annual Conference and Exhibition
,
Vienna, Austria
,
May 23–26
.
137.
Liang
,
T.
,
Li
,
Q.
,
Liang
,
X.
,
Yao
,
E.
,
Wang
,
Y.
,
Li
,
Y.
,
Chen
,
M.
,
Zhou
,
F.
, and
Lu
,
J.
,
2018
, “
Evaluation of Liquid Nanofluid as Fracturing Fluid Additive on Enhanced Oil Recovery From Low-Permeability Reservoirs
,”
J. Pet. Sci. Eng.
,
168
, pp.
390
399
.
138.
Wang
,
R.
,
Liu
,
T.
,
Ning
,
F.
,
Ou
,
W.
,
Zhang
,
L.
,
Wang
,
Z.
,
Peng
,
L.
,
Sun
,
J.
,
Liu
,
Z.
,
Li
,
T.
, and
Sun
,
H.
,
2019
, “
Effect of Hydrophilic Silica Nanoparticles on Hydrate Formation: Insight From the Experimental Study
,”
J. Energy Chem.
,
30
, pp.
90
100
.
139.
Mokheimer
,
E.
,
Hamdy
,
M.
,
Abubakar
,
Z.
,
Shakeel
,
M. R.
,
Habib
,
M. A.
, and
Mahmoud
,
M.
,
2019
, “
A Comprehensive Review of Thermal Enhanced Oil Recovery: Techniques Evaluation
,”
ASME J. Energy Resour. Technol.
,
141
(
3
), p.
030801
.
140.
Sun
,
X.
,
Zhang
,
Y.
,
Chen
,
G.
, and
Gai
,
Z.
,
2017
, “
Application of Nanoparticles in Enhanced Oil Recovery: A Critical Review of Recent Progress
,”
Energies
,
10
(
3
), p.
345
.
141.
Ahmadi
,
M.
,
Habibi
,
A.
,
Pourafshary
,
P.
, and
Ayatollahi
,
S.
,
2013
, “
Zeta-Potential Investigation and Experimental Study of Nanoparticles Deposited on Rock Surface to Reduce Fines Migration
,”
SPE J.
,
18
(
3
), pp.
534
544
.
142.
Alomair
,
O. A.
,
Matar
,
K. M.
, and
Alsaeed
,
Y. H.
,
2014
, “
Nanofluids Application for Heavy Oil Recovery
,”
SPE Asia Pacific Oil & Gas Conference and Exhibition
,
Adelaide, Australia
, Oct. 14–16.
143.
Meng
,
X.
, and
Yang
,
D.
,
2019
, “
Critical Review of Stabilized Nanoparticle Transport in Porous Media
,”
ASME J. Energy Resour. Technol.
,
141
(
7
), p.
070801
.
144.
Ali
,
N.
,
Teixeira
,
J. A.
, and
Addali
,
A.
,
2018
, “
A Review on Nanofluids: Fabrication, Stability, and Thermophysical Properties
,”
J. Nanomater.
,
2018
, p.
6978130
.
145.
Sun
,
X.
,
Dong
,
M.
,
Zhang
,
Y.
, and
Maini
,
B. B.
,
2015
, “
Enhanced Heavy Oil Recovery in Thin Reservoirs Using Foamy Oil-Assisted Methane Huff-n-Puff Method
,”
Fuel
,
159
, pp.
962
973
.
146.
Rezk
,
M. Y.
, and
Allam
,
N. K.
,
2019
, “
Impact of Nanotechnology on Enhanced Oil Recovery: A Mini-Review
,”
Ind. Eng. Chem. Res.
,
58
(
36
), pp.
16287
16295
.
147.
Afolabi
,
R. O.
, and
Yusuf
,
E. O.
,
2019
, “
Nanotechnology and Global Energy Demand: Challenges and Prospects for a Paradigm Shift in the Oil and Gas Industry
,”
J. Pet. Explor. Prod. Technol.
,
9
(
2
), pp.
1423
1441
.
148.
Ali
,
J. A.
,
Kolo
,
K.
,
Manshad
,
A. K.
, and
Mohammadi
,
A. H.
,
2018
, “
Recent Advances in Application of Nanotechnology in Chemical Enhanced Oil Recovery: Effects of Nanoparticles on Wettability Alteration, Interfacial Tension Reduction, and Flooding
,”
Egypt. J. Pet.
,
27
(
4
), pp.
1371
1383
.
149.
Ding
,
Y.
,
Zheng
,
S.
,
Meng
,
X.
, and
Yang
,
D.
,
2019
, “
Low Salinity Hot Water Injection With Addition of Nanoparticles for Enhancing Heavy Oil Recovery
,”
ASME J. Energy Resour. Technol.
,
141
(
7
), p.
072904
.
150.
Basu
,
S.
, and
Sharma
,
M. M.
,
1996
, “
Measurement of Critical Disjoining Pressure for Dewetting of Solid Surfaces
,”
J. Colloid Interface Sci.
,
181
(
2
), pp.
443
455
.
151.
Aveyard
,
R.
,
Binks
,
B. P.
, and
Clint
,
J. H.
,
2003
, “
Emulsions Stabilised Solely by Colloidal Particles
,”
Adv. Colloid Interface Sci.
,
100–102
, pp.
503
546
.
152.
Zhang
,
H.
,
Ramakrishnan
,
T. S.
,
Nikolov
,
A.
, and
Wasan
,
D.
,
2018
, “
Enhanced Oil Displacement by Nanofluid’s Structural Disjoining Pressure in Model Fractured Porous Media
,”
J. Colloid Interface Sci.
,
511
, pp.
48
56
.
153.
Deng
,
X.
,
Tariq
,
Z.
,
Murtaza
,
M.
,
Patil
,
S.
,
Mahmoud
,
M.
, and
Kamal
,
M.S.
,
2021
, “
Relative Contribution of Wettability Alteration and Interfacial Tension Reduction in EOR: A Critical Review
,”
J. Mol. Liq.
,
325
, p.
115175
.
154.
Rajabi
,
M. S.
,
Moradi
,
R.
, and
Mehrizadeh
,
M.
,
2021
, “
Experimental Investigation of Chemical Solutions Effects on Wettability Alteration and Interfacial Tension Reduction Using Nano-Alkaline–Surfactant Fluid: An EOR Application in Carbonate Reservoirs
,”
J. Pet. Explor. Prod. Technol.
,
11
(
4
), pp.
1925
1941
.
155.
Cheraghian
,
G.
,
December 2015
, “
Effects of Nanoparticles on Wettability: A Review on Applications of Nanotechnology in the Enhanced Oil Recovery.
International Journal of Nano Dimension (IJND)
,
443–452
.
156.
Gbadamosi
,
A. O.
,
Junin
,
R.
,
Manan
,
M. A.
,
Agi
,
A.
, and
Yusuff
,
A. S.
,
2019
, “
An Overview of Chemical Enhanced Oil Recovery: Recent Advances and Prospects
,”
Int. Nano Lett.
,
9
(
3
), pp.
171
202
.
157.
Shah
,
R. D.
,
2009
, “
Application of Nanoparticle Saturated Injectant Gases for EOR of Heavy Oils
,”
SPE Annual Technical Conference and Exhibition
,
New Orleans, LA
,
Oct. 4–7
.
158.
Kazemi
,
I.
,
Sefid
,
M.
, and
Afrand
,
M.
,
2020
, “
A Novel Comparative Experimental Study on Rheological Behavior of Mono & Hybrid Nanofluids Concerned Graphene and Silica Nano-Powders: Characterization, Stability and Viscosity Measurements
,”
Powder Technol.
,
366
, pp.
216
229
.
159.
Ali
,
H.
,
Soleimani
,
H.
,
Yahya
,
N.
,
Khodapanah
,
L.
,
Sabet
,
M.
,
Demiral
,
B. M.
,
Hussain
,
T.
, and
Adebayo
,
L. L.
,
2020
, “
Enhanced Oil Recovery by Using Electromagnetic-Assisted Nanofluids: A Review
,”
J. Mol. Liq.
,
309
, p.
113095
.
160.
Parsaei
,
R.
,
Kazemzadeh
,
Y.
, and
Riazi
,
M.
,
2020
, “
Study of Asphaltene Precipitation During CO2 Injection Into Oil Reservoirs in the Presence of Iron Oxide Nanoparticles by Interfacial Tension and Bond Number Measurements
,”
ACS Omega
,
5
(
14
), pp.
7877
7884
.
161.
Kazemzadeh
,
Y.
,
Eshraghi
,
S. E.
,
Sourani
,
S.
, and
Reyhani
,
M.
,
2015
, “
An Interface-Analyzing Technique to Evaluate the Heavy Oil Swelling in Presence of Nickel Oxide Nanoparticles
,”
J. Mol. Liq.
,
211
, pp.
553
559
.
162.
Skauge
,
T.
,
Hetland
,
S.
,
Spildo
,
K.
, and
Skauge
,
A.
,,
2010
, “
Nano-Sized Particles for EOR
,”
SPE Improved Oil Recovery Symposium
,
Tulsa, OK
,
Apr. 24–28
.
163.
Idogun
,
A. K.
,
Iyagba
,
E. T.
,
Ukwotije-Ikwut
,
R. P.
, and
Aseminaso
,
A.
,
2016
, “
A Review Study of Oil Displacement Mechanisms and Challenges of Nanoparticle Enhanced Oil Recovery
,”
SPE Nigeria Annual International Conference and Exhibition
,
OnePetro
.
164.
Aziz
,
H.
, and
Tunio
,
S. Q.
,
2019
, “
Enhancing Oil Recovery Using Nanoparticles—A Review
,”
Adv. Nat. Sci.: Nanosci. Nanotechnol.
,
10
(
3
), p.
033001
.
165.
Hashemi
,
R.
,
Nassar
,
N. N.
, and
Pereira Almao
,
P.
,
2014
, “
Nanoparticle Technology for Heavy Oil In-Situ Upgrading and Recovery Enhancement: Opportunities and Challenges
,”
Appl. Energy
,
133
, pp.
374
387
.
166.
Hyne
,
J.
,
1986
,
Aquathermolysis: A Synopsis of Work on the Chemical Reaction Between Water (Steam) and Heavy Oil Sands During Simulated Steam Stimulation, Canada
.
167.
Li
,
W.
,
Zhu
,
J.-H.
, and
Qi
,
J.-H.
,
2007
, “
Application of Nano-Nickel Catalyst in the Viscosity Reduction of Liaohe Extra-Heavy Oil by Aqua-Thermolysis
,”
J. Fuel Chem. Technol.
,
35
(
2
), pp.
176
180
.
168.
Hanyong
,
L.
,
Kexin
,
C.
,
Ling
,
J.
,
Leilei
,
W.
, and
Bo
,
Y.
,
2018
, “
Experimental Study on the Viscosity Reduction of Heavy Oil With Nano-Catalyst by Microwave Heating Under Low Reaction Temperature
,”
J. Pet. Sci. Eng.
,
170
, pp.
374
382
.
169.
Elahi
,
S. M.
,
Khoshooei
,
M. A.
,
Ortega
,
L. C.
,
Scott
,
C. E.
,
Chen
,
Z.
, and
Pereira-Almao
,
P.
,
2020
, “
Chemical Insight Into Nano-Catalytic In-Situ Upgrading and Recovery of Heavy Oil
,”
Fuel
,
278
, p.
118270
.
170.
Angardi
,
V.
,
Ettehadi
,
A.
, and
Yücel
,
Ö
,
2021
, “
Critical Review of Emulsion Stability and Characterization Techniques in Oil Processing
,”
ASME J. Energy Resour. Technol.
,
144
(
4
), p.
040801
.
171.
Mandal
,
A.
,
Bera
,
A.
,
Ojha
,
K.
, and
Kumar
,
T.
,
2012
, “
Characterization of Surfactant Stabilized Nanoemulsion and Its Use in Enhanced Oil Recovery
,”
SPE International Oilfield Nanotechnology Conference and Exhibition
,
Noordwijk, The Netherlands
,
June 12–14
, Society of Petroleum Engineers.
172.
Kumar
,
N.
, and
Mandal
,
A.
,
2018
, “
Surfactant Stabilized Oil-in-Water Nanoemulsion: Stability, Interfacial Tension, and Rheology Study for Enhanced Oil Recovery Application
,”
Energy Fuels
,
32
(
6
), pp.
6452
6466
.
173.
Kumar
,
N.
,
Pal
,
N.
, and
Mandal
,
A.
,
2021
, “
Nanoemulsion Flooding for Enhanced Oil Recovery: Theoretical Concepts, Numerical Simulation and History Match
,”
J. Pet. Sci. Eng.
,
202
, p.
108579
.
174.
Jalilian
,
M.
,
Tabzar
,
A.
,
Ghasemi
,
V.
,
Mohammadzadeh
,
O.
,
Pourafshary
,
P.
,
Rezaei
,
N.
, and
Zendehboudi
,
S.
,
2019
, “
An Experimental Investigation of Nanoemulsion Enhanced Oil Recovery: Use of Unconsolidated Porous Systems
,”
Fuel
,
251
, pp.
754
762
.
175.
Binks
,
B. P.
, and
Lumsdon
,
S. O.
,
2000
, “
Influence of Particle Wettability on the Type and Stability of Surfactant-Free Emulsions
,”
Langmuir
,
16
(
23
), pp.
8622
8631
.
176.
Mcelfresh
,
P. M.
,
Olguin
,
C.
, and
Ector
,
D.
,
2012
, “
The Application of Nanoparticle Dispersions to Remove Paraffin and Polymer Filter Cake Damage
,”
SPE International Symposium and Exhibition on Formation Damage Control
,
Lafayette, LA
,
Feb. 15–17
.
177.
Kumar
,
N.
, and
Mandal
,
A.
,
2020
, “
Wettability Alteration of Sandstone Rock by Surfactant Stabilized Nanoemulsion for Enhanced Oil Recovery—A Mechanistic Study
,”
Colloids Surf., A
,
601
, p.
125043
.
178.
Onyekonwu
,
M. O.
, and
Ogolo
,
N. A.
,
2010
, “
Investigating the Use of Nanoparticles in Enhancing Oil Recovery
,”
Nigeria Annual International Conference and Exhibition
,
Tinapa - Calabar, Nigeria
,
July 31–Aug. 7
.
179.
Gomaa
,
S.
,
Taha
,
M.
, and
El-Hoshoudy
,
A.
,
November 30, 2018
, “
Investigating the Effect of Different Nanofluids on Crude Oil Viscosity
,”
Pet. Petrochem. Eng. J.
,
2
(
7
).
180.
Molnes
,
S. N.
,
Torrijos
,
I. P.
,
Strand
,
S.
,
Paso
,
K. G.
, and
Syverud
,
K.
,
2016
, “
Sandstone Injectivity and Salt Stability of Cellulose Nanocrystals (CNC) Dispersions—Premises for Use of CNC in Enhanced Oil Recovery
,”
Ind. Crops Prod.
,
93
, pp.
152
160
.
181.
Nowrouzi
,
I.
,
Manshad
,
A. K.
, and
Mohammadi
,
A. H.
,
2019
, “
Effects of TiO2, MgO, and γ-Al2O3 Nano-Particles in Carbonated Water on Water-Oil Interfacial Tension (IFT) Reduction in Chemical Enhanced Oil Recovery (CEOR) Process
,”
J. Mol. Liq.
,
292
, p.
111348
.
182.
Rostami
,
P.
,
Sharifi
,
M.
,
Aminshahidy
,
B.
, and
Fahimpour
,
J.
,
2020
, “
Enhanced Oil Recovery Using Silica Nanoparticles in the Presence of Salts for Wettability Alteration
,”
J. Dispersion Sci. Technol.
,
41
(
3
), pp.
402
413
.
183.
Mohebbifar
,
M.
,
Ghazanfari
,
M. H.
, and
Vossoughi
,
M.
,
2015
, “
Experimental Investigation of Nano-Biomaterial Applications for Heavy Oil Recovery in Shaly Porous Models: A Pore-Level Study
,”
ASME J. Energy Resour. Technol.
,
137
(
1
), p.
014501
.
184.
Elyaderani
,
S. M. G.
, and
Jafari
,
A.
,
2019
, “
Microfluidics Experimental Study in Porous Media Applied for Nanosilica/Alkaline Flooding
,”
J. Pet. Sci. Eng.
,
173
, pp.
1289
1303
.
185.
Alhuraishawy
,
A. K.
,
Hamied
,
R. S.
,
Hammood
,
H. A.
, and
AL-Bazzaz
,
W. H.
,
2019
, “
Enhanced Oil Recovery for Carbonate Oil Reservoir by Using Nano-Surfactant: Part II
,”
SPE Gas & Oil Technology Showcase and Conference
,
Dubai, UAE
,
Oct. 21–23
.
186.
Rellegadla
,
S.
,
Bairwa
,
H. K.
,
Kumari
,
M. R.
,
Prajapat
,
G.
,
Nimesh
,
S.
,
Pareek
,
N.
,
Jain
,
S.
, and
Agrawal
,
A.
,
2018
, “
An Effective Approach for Enhanced Oil Recovery Using Nickel Nanoparticles Assisted Polymer Flooding
,”
Energy Fuels
,
32
(
11
), pp.
11212
11221
.
187.
Sloan
,
E. D.
,
2010
,
Natural Gas Hydrates in Flow Assurance
,
Gulf Professional Publishing
,
Houston, TX
.
188.
Tiratsoo
,
J. N.
,
1992
,
Pipeline Pigging Technology
,
Gulf Professional Publishing
,
Houston, TX
.
189.
Davidson
,
R.
,
2002
, “
An Introduction to Pipeline Pigging
,” Pigging Products and Services Association.
190.
Frenier
,
W. W.
, and
Ziauddin
,
M.
,
2008
,
Formation, Removal, and Inhibition of Inorganic Scale in the Oilfield Environment
,
Society of Petroleum Engineers
,
Richardson, TX
.
191.
Sun
,
Z.
,
Jing
,
G.
, and
Tu
,
Z.
,
2018
, “
Effect of Modified Nano-Silica/EVA on Flow Behavior and Wax Crystallization of Model Oils With Different Wax Contents
,”
J. Dispersion Sci. Technol.
,
39
(
1
), pp.
71
76
.
192.
Mohammadi
,
M.
,
Akbari
,
M.
,
Fakhroueian
,
Z.
,
Bahramian
,
A.
,
Azin
,
R.
, and
Arya
,
S.
,
2011
, “
Inhibition of Asphaltene Precipitation by TiO2, SiO2, and ZrO2 Nanofluids
,”
Energy Fuels
,
25
(
7
), pp.
3150
3156
.
193.
Haindade
,
Z. M. W.
,
Bihani
,
A. D.
,
Javeri
,
S. M.
, and
Jere
,
C. B.
,
2012
, “
Enhancing Flow Assurance Using Co-Ni Nanoparticles for Dewaxing of Production Tubing
,”
SPE International Oilfield Nanotechnology Conference and Exhibition
,
Noordwijk, The Netherlands
,
June 12–14
, Society of Petroleum Engineers.
194.
Kumar
,
D.
,
Chishti
,
S. S.
,
Rai
,
A.
, and
Patwardhan
,
S. D.
,
2012
, “
Scale Inhibition Using Nano-Silica Particles
,”
SPE Middle East Health, Safety, Security, and Environment Conference and Exhibition
,
Abu Dhabi, UAE
,
Apr. 2–4
, Society of Petroleum Engineers.
195.
Zhang
,
P.
,
2020
, “
Review of Synthesis and Evaluation of Inhibitor Nanomaterials for Oilfield Mineral Scale Control
,”
Front. Chem.
,
8
, pp.
576055
576055
.
196.
Shi
,
X.
,
Nguyen
,
T. A.
,
Suo
,
Z.
,
Liu
,
Y.
, and
Avci
,
R.
,
2009
, “
Effect of Nanoparticles on the Anticorrosion and Mechanical Properties of Epoxy Coating
,”
Surf. Coat. Technol.
,
204
(
3
), pp.
237
245
.
197.
Zhang
,
P.
,
Ruan
,
G.
,
Kan
,
A. T.
, and
Tomson
,
M. B.
,
2016
, “
Functional Scale Inhibitor Nanoparticle Capsule Delivery Vehicles for Oilfield Mineral Scale Control
,”
RSC Adv.
,
6
(
49
), pp.
43016
43027
.
198.
Kiaei
,
Z.
, and
Haghtalab
,
A.
,
2014
, “
Experimental Study of Using Ca-DTPMP Nanoparticles in Inhibition of CaCO3 Scaling in a Bulk Water Process
,”
Desalination
,
338
, pp.
84
92
.
199.
Alboudwarej
,
H.
,
Felix
,
J.
,
Taylor
,
S.
,
Badry
,
R.
,
Bremner
,
C.
,
Brough
,
B.
,
Sketaes
,
C.
, et al
,
2006
, “
Highlighting Havy Oil
,”
Oilfield Review
,
18
(
2
), pp.
34
53
.
200.
Hosseinpour
,
M.
,
Fatemi
,
S.
, and
Ahmadi
,
S. J.
,
2015
, “
Catalytic Cracking of Petroleum Vacuum Residue in Supercritical Water Media: Impact of α-Fe2O3 in the Form of Free Nanoparticles and Silica-Supported Granules
,”
Fuel
,
159
, pp.
538
549
.
201.
Etim
,
U. J.
,
Bai
,
P.
, and
Yan
,
Z.
,
2018
,
Nanotechnology in Oil and Gas Industries, Topics in Mining, Metallurgy and Materials Engineering
,
Springer
,
Cham
, pp.
37
65
.
202.
Zhou
,
X.
,
Xu
,
W.
,
Liu
,
G.
,
Panda
,
D.
, and
Chen
,
P.
,
2010
, “
Size-Dependent Catalytic Activity and Dynamics of Gold Nanoparticles at the Single-Molecule Level
,”
J. Am. Chem. Soc.
,
132
(
1
), pp.
138
146
.
203.
Bell
,
A. T.
,
2003
, “
The Impact of Nanoscience on Heterogeneous Catalysis
,”
Science
,
299
(
5613
), pp.
1688
1691
.
204.
Valtchev
,
V.
, and
Tosheva
,
L.
,
2013
, “
Porous Nanosized Particles: Preparation, Properties, and Applications
,”
Chem. Rev.
,
113
(
8
), pp.
6734
6760
.
205.
Eidy
,
T.
,
Hosseini
,
S. A.
, and
Marandi
,
G.
,
2020
, “
Application of SnO2/Alumina Nanocatalyst in Removal of Naphthenic Acids From Crude Oil
,”
Iran. J. Oil Gas Sci. Technol.
,
9
(
4
), pp.
115
123
.
206.
Tajik
,
S.
,
Shahrabadi
,
A.
, and
Rashidi
,
A.
,
2019
, “
Silica-Graphene Nanohybrid Supported MoS2 Nanocatalyst for Hydrogenation Reaction and Upgrading Heavy Oil
,”
J. Pet. Sci. Eng.
,
177
, pp.
822
828
.
207.
Montoya
,
T.
,
Argel
,
B. L.
,
Nassar
,
N. N.
,
Franco
,
C. A.
and
Cortés
,
F. B.
,
2016
, “
Kinetics and Mechanisms of the Catalytic Thermal Cracking of Asphaltenes Adsorbed on Supported Nanoparticles
,”
Pet. Sci.
,
13
(
3
), pp.
561
571
.
208.
Golmohammadi
,
M.
,
Ahmadi
,
S. J.
, and
Towfighi
,
J.
,
2016
, “
Catalytic Cracking of Heavy Petroleum Residue in Supercritical Water: Study on the Effect of Different Metal Oxide Nanoparticles
,”
J. Supercrit. Fluids
,
113
, pp.
136
143
.
209.
Vajda
,
S.
,
Pellin
,
M. J.
,
Greeley
,
J. P.
,
Marshall
,
C. L.
,
Curtiss
,
L. A.
,
Ballentine
,
G. A.
, and
Elam
,
J. W.
,
2009
, “
Subnanometre Platinum Clusters as Highly Active and Selective Catalysts for the Oxidative Dehydrogenation of Propane
,”
Nat. Mater.
,
8
(
3
), pp.
213
216
.
210.
Mokhatab
,
S.
, and
Poe
,
W. A.
,
2012
,
Handbook of Natural Gas Transmission and Processing
,
Gulf Professional Publishing
,
Waltham, MA
.
211.
Farag
,
H. A.
,
Ezzat
,
M. M.
,
Amer
,
H.
, and
Nashed
,
A. W.
,
2011
, “
Natural Gas Dehydration by Desiccant Materials
,”
Alexandria Eng. J.
,
50
(
4
), pp.
431
439
.
212.
Stewart
,
M.
, and
Arnold
,
K.
,
2011
,
Gas Sweetening and Processing Field Manual
,
Gulf Professional Publishing
,
Waltham, MA
.
213.
Moore
,
P. J.
, and
Spitler
,
R. W.
,
2003
,
Hydrogen Sulfide Measurement and Detection
,
Proced. American School of Gas Measurement Technology
,
Texas
, pp.
118
123
.
214.
Farahbod
,
F.
,
Farahmand
,
S.
,
Soltanian
,
M. J.
, and
Nikkhahi
,
M.
,
2013
, “
Finding of Optimum Effective Parameters on Sweetening of Methane Gas by Zinc Oxide Nanoparticles
,”
ASME J. Nanotechnol. Eng. Med.
,
4
(
2
), p.
021003
.
215.
Hosseini
,
A.
, and
Hassankiadeh
,
M. N.
,
2017
, “
Parametric Study of Sweetening Process of Sour Gas by Molybdenum Oxide Nanoparticles
,”
Braz. J. Chem. Eng.
,
34
(
4
), pp.
1191
1202
.
216.
Li
,
Y. H.
, and
Zhu
,
Y. Q.
,
2012
, “Research Progress of Unsupported Nano Catalyst,”
Advanced Materials Research
,
Trans Tech Publications Ltd
.
217.
Guo
,
K.
,
Hansen
,
V. F.
,
Li
,
H.
, and
Yu
,
Z.
,
2018
, “
Monodispersed Nickel and Cobalt Nanoparticles in Desulfurization of Thiophene for In-Situ Upgrading of Heavy Crude Oil
,”
Fuel
,
211
, pp.
697
703
.
218.
Khalil
,
M.
,
Lee
,
R. L.
, and
Liu
,
N.
,
2015
, “
Hematite Nanoparticles in Aquathermolysis: A Desulfurization Study of Thiophene
,”
Fuel
,
145
, pp.
214
220
.
219.
Danmaliki
,
G. I.
, and
Saleh
,
T. A.
,
2017
, “
Effects of Bimetallic Ce/Fe Nanoparticles on the Desulfurization of Thiophenes Using Activated Carbon
,”
Chem. Eng. J.
,
307
, pp.
914
927
.
220.
Ali
,
R. M.
,
Fallah
,
S. A.
, and
Mohamadi
,
Z. F.
,
2014
, “
Anatase Titania-Vanadium Polyphosphomolybdate as an Efficient and Reusable Nano Catalyst for Desulphurization of Gas Oil
,”
J. Serb. Chem. Soc.
,
79
(
9
), pp.
1099
1110
.
221.
Rezvani
,
M. A.
,
Shaterian
,
M.
,
Akbarzadeh
,
F.
, and
Khandan
,
S.
,
2018
, “
Deep Oxidative Desulfurization of Gasoline Induced by PMoCu@MgCu2O4-PVA Composite as a High-Performance Heterogeneous Nanocatalyst
,”
Chem. Eng. J.
,
333
, pp.
537
544
.
222.
Esmaeili-Faraj
,
S. H.
,
Hassanzadeh
,
A.
,
Shakeriankhoo
,
F.
,
Hosseini
,
S.
, and
Vaferi
,
B.
,
2021
, “
Diesel Fuel Desulfurization by Alumina/Polymer Nanocomposite Membrane: Experimental Analysis and Modeling by the Response Surface Methodology
,”
Chem. Eng. Process.: Process Intensif.
,
164
, p.
108396
.
223.
Ahmadpour
,
E.
,
Sarfaraz
,
M. V.
,
Behbahani
,
R. M.
,
Shamsabadi
,
A. A.
, and
Aghajani
,
M.
,
2016
, “
Fabrication of Mixed Matrix Membranes Containing TiO2 Nanoparticles in Pebax 1657 as a Copolymer on an Ultra-Porous PVC Support
,”
J. Nat. Gas Sci. Eng.
,
35
, pp.
33
41
.
224.
Franco
,
C. A.
,
Candela
,
C. H.
,
Gallego
,
J.
,
Marin
,
J.
,
Patiño
,
L. E.
,
Ospina
,
N.
,
Patiño
,
E.
,
Molano
,
M.
,
Villamil
,
F.
,
Bernal
,
K. M.
, and
Lopera
,
S.H.
,
2020
, “
Easy and Rapid Synthesis of Carbon Quantum Dots From Mortiño (Vaccinium Meridionale Swartz) Extract for Use as Green Tracers in the Oil and Gas Industry: Lab-to-Field Trial Development in Colombia
,”
Ind. Eng. Chem. Res.
,
59
(
25
), pp.
11359
11369
.
225.
Barroso
,
A. L.
,
Marcelino
,
C. P.
,
Leal
,
A. B.
,
Odum
,
D. M.
,
Lucena
,
C.
,
Masculo
,
M.
, and
Castro
,
F.
,
2018
, “
New Generation Nano Technology Drilling Fluids Application Associated to Geomechanic Best Practices: Field Trial Record in Bahia – Brazil
,”
Offshore Technology Conference
,
Houston, TX
,
Apr. 30–May 3
.
226.
Franco
,
C. A.
,
Zabala
,
R.
, and
Cortés
,
F. B.
,
2017
, “
Nanotechnology Applied to the Enhancement of Oil and Gas Productivity and Recovery of Colombian fields
,”
J. Pet. Sci. Eng.
,
157
, pp.
39
55
.
227.
Zabala
,
R.
,
Franco
,
C. A.
, and
Cortés
,
F. B.
,
2016
, “
Application of Nanofluids for Improving Oil Mobility in Heavy Oil and Extra-Heavy Oil: A Field Test
,”
SPE Improved Oil Recovery Conference
,
Tulsa, OK
,
Apr. 11–13
.
228.
Kanj
,
M. Y.
,
Rashid
,
M. H.
, and
Giannelis
,
E. P.
,
2011
, “
Industry First Field Trial of Reservoir Nanoagents
,”
SPE Middle East Oil and Gas Show and Conference
,
Manama, Bahrain
,
Sept. 25–28
.
You do not currently have access to this content.