Abstract

An efficient propulsion system holds the key to the smooth operation of any aerospace vehicle over different flight regimes. Apart from generating the necessary thrust, emphasis has also been laid on vectoring the direction of thrust. The primitive modes of thrust vectoring chiefly focused on mechanical means such as the use of gimbals or hinges. The current state-of-the-art technologies demand more efficient methods for thrust vectoring, which minimize the use of mechanical components. These methods termed fluidic thrust vector control methods, employ secondary jets for achieving the required attitude, and trajectory of the aerospace vehicles such as aircraft, rockets, and missiles. Such methods have greatly helped in reducing vehicle weight, vehicle maintenance requirements, and enhancement of stealth characteristics of such vehicles. This work presents a review of the various fluidic thrust vectoring systems, starting with a brief overview of traditional thrust vectoring systems, followed by a discussion on the various aspects of fluidic thrust vectoring systems. It also highlights the effect of the various geometrical and operating conditions on the performance parameters of the thrust vectoring system such as the thrust vector angle, system thrust ratio, and thrust vectoring efficiency among others. For ensuring the comprehensive character of this work, synthetic jet vectoring techniques have also been included due to their nonmechanical nature and similarities with purely fluidic thrust vectoring techniques.

References

1.
Khare
,
S.
, and
Saha
,
U. K.
,
2021
, “
Rocket Nozzles: 75 Years of Research and Development
,”
Sadhana-Acad. Proc. Eng. Sci.
,
46
(
76
), pp.
1
22
.10.1007/s12046-021-01584-6
2.
Deere
,
K. A.
,
2000
, “
Computational Investigation of the Aerodynamic Effects of Fluidic Thrust Vectoring
,”
AIAA
Paper No. 2000-3598.10.2514/6.2000-3598
3.
Hilley
,
P. E.
,
Wallace
,
H. W.
, and
Booz
,
D. E.
,
1976
, “
Nonaxisymmetric Nozzles Installed in Advanced Fighter Aircraft
,”
J. Aircr.
,
13
(
12
), pp.
1000
1006
.10.2514/3.58740
4.
Lander
,
J. A.
,
Nash
,
D. O.
, and
Palcza
,
J. L.
,
1975
, “
Augmented Deflector Exhaust Nozzle/ADEN/Design for Future Fighters
,”
AIAA
Paper No. 1975-1318.10.2514/6.1975-1318
5.
Goetz
,
G. F.
,
Young
,
J. H.
, and
Palcza
,
J. L.
,
1976
, “
A Two-Dimensional Airframe Integrated Nozzle Design With Inflight Thrust Vectoring and Reversing Capabilities for Advanced Fighter Aircraft
,”
AIAA
Paper No. 1976-626.10.2514/6.1976-626
6.
Maiden
,
D. L.
, and
Petit
,
J. E.
,
1975
, “
Investigation of Two-Dimensional Wedge Exhaust Nozzles for Advanced Aircraft
,”
AIAA
Paper No. 1975-1317.10.2514/6.1975-1317
7.
Pendergraft
,
O. C.
, Jr
,
1977
, “
Comparison of Axisymmetric and Nonaxisymmetric Nozzles Installed on the F-15 Configuration
,”
AIAA
Paper No. 1977-842.10.2514/6.1977-842
8.
Berrier
,
B. L.
, and
Re
,
R. J.
,
1978
, “
A Review of Thrust-Vectoring Schemes for Fighter Aircraft
,”
AIAA
Paper No. 1978-1023.10.2514/6.1978-1023
9.
Gallaway
,
C. R.
, and
Osborn
,
R. F.
,
1985
, “
Aerodynamics Perspective of Super-Maneuverability
,”
AIAA
Paper No. 1985-4068.10.2514/6.1985-4068
10.
Capone
,
F. J.
, and
Mason
,
M. L.
,
1986
, “
Multiaxis Aircraft Control Power From Thrust Vectoring at High Angles of Attack
,”
Fourth Applied Aerodynamics Conference
, June 09–June 11,
San Diego, CA
, Paper No. NASA TM-87741.
11.
Berrier
,
B. L.
, and
Mason
,
M. L.
,
1987
, “
Static Investigation of Post-Exit Vanes for Multiaxis Thrust Vectoring
,”
AIAA
Paper No. 1987-1834.10.2514/6.1987-1834
12.
Taylor
,
J. G.
,
1988
, “
A Static Investigation of a Simultaneous Pitch and Yaw Thrust Vectoring 2-D C-D Nozzle
,”
AIAA
Paper No. 1988-2998.10.2514/6.1988-2998
13.
Ferlauto
,
F.
, and
Marsilio
,
R.
,
2017
, “
Numerical Investigation of the Dynamic Characteristics of a Dual-Throat-Nozzle for Fluidic Thrust-Vectoring
,”
AIAA J.
,
55
(
1
), pp.
86
98
.10.2514/1.J055044
14.
Flamm
,
J. D.
,
1998
, “
Experimental Study of a Nozzle Using Fluidic Counterflow for Thrust Vectoring
,”
AIAA
Paper No. 1998-3255.10.2514/6.1998-3255
15.
Yahaghi
,
A.
,
2011
, “
Computational Study of Fluidic Thrust Vectoring Using Shock Vector and Separation Control
,” M.S. thesis,
San Jose State University
,
San Jose, CA
.
16.
Wu
,
K.
,
Kim
,
T. H.
, and
Kim
,
H. D.
,
2020
, “
Theoretical and Numerical Analyses of Aerodynamic Characteristics on Shock Vector Control
,”
ASCE J. Aerosp. Eng.
,
33
(
5
), p. 04020050
.10.1061/(ASCE)AS.1943-5525.0001169
17.
Deng
,
R.
,
Kong
,
F.
, and
Kim
,
H. D.
,
2014
, “
Numerical Simulation of Fluidic Thrust Vectoring in an Axisymmetric Supersonic Nozzle
,”
J. Mech. Sci. Technol.
,
28
(
12
), pp.
4979
4987
.10.1007/s12206-014-1119-x
18.
Deere
,
K. A.
,
Berrier
,
B. L.
,
Flamm
,
J. D.
, and
Johnson
,
S. K.
,
2005
, “
A Computational Study of a New Dual-Throat Fluidic Thrust-Vectoring Nozzle Concept
,”
AIAA
Paper No. 2005-3502.10.2514/6.2005-3502
19.
Zmijanovic
,
V.
,
Lago
,
V.
,
Sellam
,
M.
, and
Chpoun
,
A.
,
2014
, “
Thrust Shock Vector Control of an Axisymmetric Conical Supersonic Nozzle Via Secondary Transverse Gas Injection
,”
Shock Waves
,
24
(
1
), pp.
97
111
.10.1007/s00193-013-0479-y
20.
Sutton
,
G. P.
, and
Biblarz
,
O.
,
2016
,
Rocket Propulsion Elements
, 9th ed.,
Wiley
,
Hoboken, NJ
.
21.
Hausmann
,
G. F.
,
1952
, “
Thrust Axis Control of Supersonic Nozzles by Airjet Shock Interference
,”
United Aircraft Corporation
, Moscow, Russia,
Report R-63143-24.
22.
Sekhon
,
K. S.
,
1964
,
Thrust Vectoring Experiments with Gas Injection
, M.S. thesis,
University of Arizona
, Tucson,
AZ
.
23.
Bankston
,
L. T.
,
1959
, “
Thrust Vectoring Experiments
,”
U.S. Naval Ordnance Test Station
,
China Lake, CA
,
Report No. NAVORD Dept. 6548, NOTS 2247.
24.
Hawk
,
G. W.
, and
Geyer
,
L. H.
,
1962
,
Secondary Injection Thrust Vector Control Systems
,
Aerospace Engineering, Moog Servocontrols
, East Aurora, NY.
25.
Green
,
C. J.
, and
McCullough
,
F.
, Jr.
,
1961
, “
Liquid Thrust Vectoring Control
,”
U.S. Naval Ordnance Test Station
,
China Lake, CA
,
Report No. Navwers 7744, Nots 2711.
26.
Newton
,
J. F.
, and
Spaid
,
F. W.
,
1962
, “
Interaction of Secondary Injectants and Rocket Exhaust for Thrust Vector Control
,”
ARS J.
,
32
(
8
), pp.
1202
1212
.10.2514/8.6245
27.
Walker
,
R. E.
,
Stone
,
A. R.
, and
Shandor
,
M.
,
1963
, “
Secondary Gas Injection in a Conical Rocket Nozzle
,”
AIAA J.
,
1
(
2
), pp.
334
338
.10.2514/3.1533
28.
Guhse
,
R. D.
,
1965
, “
An Experimental Investigation of Thrust Vector Control by Secondary Injection
,”
NASA
, Lafayette, IN,
Report No. CR–297.
29.
Zukoski
,
E. E.
,
1967
, “
Turbulent Boundary-Layer Separation in Front of a Forward-Facing Step
,”
AIAA J.
,
5
(
10
), pp.
1746
1753
.10.2514/3.4299
30.
Spaid
,
F. W.
, and
Zukoski
,
E. E.
,
1968
, “
A Study of the Interaction of Gaseous Jets From Transverse Slots With Supersonic External Flows
,”
AIAA J.
,
6
(
2
), pp.
205
212
.10.2514/3.4479
31.
Neilson
,
J. H.
,
Gilchrist
,
A.
, and
Lee
,
C. K.
,
1969
, “
Control Forces in Rocket Nozzles Produced by Secondary Gas Stream Inclined at Various Angles to the Nozzle Exit
,”
J. Mech. Eng. Sci.
,
11
(
2
), pp.
175
180
.10.1243/JMES_JOUR_1969_011_022_02
32.
Wu
,
J. M.
,
Chapkis
,
R. L.
, and
Mager
,
A.
,
1961
, “
Approximate Analysis of Thrust Vector Control by Fluid Injection
,”
ARS J.
,
31
(
12
), pp.
1677
1685
.10.2514/8.5891
33.
Karamcheti
,
K.
, and
Hsia
,
H. T.
,
1963
, “
Integral Approach to an Approximate Analysis of Thrust Vector Control by Secondary Injection
,”
AIAA J.
,
1
(
11
), pp.
2538
2544
.10.2514/3.2106
34.
Broadwell
,
J. E.
,
1963
, “
Analysis of the Fluid Mechanics of Secondary Injection for Thrust Vector Control
,”
AIAA J.
,
1
(
5
), pp.
1067
1075
.10.2514/3.1726
35.
Walker
,
R. E.
, and
Shandor
,
M.
,
1964
, “
Influence of Injectant Properties for Fluid-Injection Thrust Vector Control
,”
J. Spacecr. Rockets
,
1
(
4
), pp.
409
413
.10.2514/3.27670
36.
Sehgal
,
R.
, and
Wu
,
J. M.
,
1964
, “
Thrust Vector Control by Liquid Injection Into Rocket Nozzles
,”
J. Spacecr. Rockets
,
1
(
5
), pp.
545
551
.10.2514/3.27695
37.
Schetz
,
J. A.
, and
Billig
,
F. S.
,
1966
, “
Penetration of Gaseous Jets Injected Into a Supersonic Stream
,”
J. Spacecr. Rockets
,
3
(
11
), pp.
1658
1665
.10.2514/3.28721
38.
Santiago
,
J. G.
, and
Dutton
,
J.
,
1997
, “
Crossflow Vortices of a Jet Injected Into a Supersonic Cross-Flow
,”
AIAA J.
,
35
(
5
), pp.
915
917
.10.2514/2.7468
39.
Viti
,
V.
,
Neel
,
R.
, and
Schetz
,
J. A.
,
2009
, “
Detailed Flow Physics of the Supersonic Jet Interaction Flow Field
,”
Phys. Fluids
,
21
(
4
), p.
046101
.10.1063/1.3112736
40.
Rizetta
,
D. P.
,
1992
, “
Numerical Simulation of Slot Injection Into a Turbulent Supersonic Stream
,”
AIAA J.
,
30
(
10
), pp.
2434
2439
.10.2514/3.11244
41.
Kontis
,
K.
, and
Stollery
,
J. L.
,
1997
, “
Control Effectiveness of a Jet-Slender Body Combination at Hypersonic Speeds
,”
J. Spacecr. Rockets
,
34
(
6
), pp.
762
768
.10.2514/2.3283
42.
Kumar
,
D.
,
Stollery
,
J. L.
, and
Smith
,
A. J.
,
1997
, “
Hypersonic Jet Control Effectiveness
,”
Shock Waves
,
7
, pp.
1
12
.10.1007/s001930050056
43.
Dhinagaran
,
R.
, and
Bose
,
T. K.
,
1998
, “
Numerical Simulation of Two-Dimensional Transverse Gas Injection Into Supersonic External Flows
,”
AIAA J.
,
36
(
3
), pp.
486
488
.10.2514/2.393
44.
Chenault
,
C. F.
, and
Beran
,
P. S.
,
1998
, “
k-ε and Reynolds Stress Turbulence Model Comparisons for Two-Dimensional Injection Flows
,”
AIAA J.
,
36
(
8
), pp.
1401
1412
.10.2514/2.561
45.
Erdem
,
E.
, and
Kontis
,
K.
,
2010
, “
Numerical and Experimental Investigation of Transverse Injection Flows
,”
Shock Waves
,
20
, pp.
103
118
.10.1007/s00193-010-0247-1
46.
Mangin
,
B.
,
Chpoun
,
A.
, and
Jacquin
,
L.
,
2006
, “
Experimental and Numerical Study of the Fluidic Thrust Vectoring of a Two-Dimensional Supersonic Nozzle
,”
AIAA
Paper No. 2006-3666.10.2514/6.2006-3666
47.
Zmijanovic
,
V.
,
Leger
,
L.
,
Lago
,
V.
,
Sellam
,
M.
, and
Chpoun
,
A.
,
2012
, “
Experimental and Numerical Study of Thrust-Vectoring Effects by Transverse Gas Injection Into a Propulsive Axisymmetric C-D Nozzle
,”
AIAA
Paper No. 3874.10.2514/6.3874
48.
Sellam
,
M.
,
Chpoun
,
A.
,
Zmijanovic
,
V.
, and
Lago
,
V.
,
2012
, “
Fluidic Thrust Vectoring of an Axisymmetrical Nozzle: An Analytical Model
,”
Int. J. Aerodyn.
,
2
(
2–4
), pp.
193
209
.10.1504/IJAD.2012.049112
49.
Abramovich
,
G. N.
,
1963
,
The Theory of Turbulent Jets
,
MIT Press
,
Cambridge, MA
.
50.
Broadwell
,
J. E.
, and
Breidenthal
,
R. E.
,
1984
, “
Structure and Mixing of a Transverse Jet in Incompressible Flow
,”
J. Fluid Mech.
,
148
, pp.
405
412
.10.1017/S0022112084002408
51.
Pratte
,
B. D.
, and
Baines
,
W. D.
,
1967
, “
Profiles of the Round Turbulent Jet in a Cross Flow
,”
J. Hydraul. Div.
,
93
(
6
), pp.
53
64
.10.1061/JYCEAJ.0001735
52.
Papamoschou
,
D.
, and
Hubbard
,
D. G.
,
1993
, “
Visual Observations of Supersonic Transverse Jets
,”
Exp. Fluids
,
14
(
6
), pp.
468
476
.10.1007/BF00190201
53.
Zmijanovic
,
V.
,
Leger
,
L.
,
Depussay
,
E.
,
Sellam
,
M.
, and
Chpoun
,
A.
,
2016
, “
Experimental-Numerical Parametric Investigation of a Rocket Nozzle Secondary Injection Thrust Vectoring
,”
J. Propul. Power
,
32
(
1
), pp.
196
213
.10.2514/1.B35721
54.
Zou
,
X. H.
, and
Wang
,
Q.
,
2011
, “
The Comparative Analysis of Two Typical Fluidic Thrust Vectoring Exhaust Nozzles on Aerodynamic Characteristics
,”
World Acad. Sci., Eng. Technol.
,
52
, pp.
610
616
.https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=6a8fd00a82430ff88caf262dcf7ada80b2d35f5b
55.
Deng
,
R.
, and
Kim
,
H. D.
,
2015
, “
A Study on the Thrust Vector Control Using a Bypass Flow Passage
,”
Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng.
,
229
(
9
), pp.
1722
1729
.10.1177/0954410014558693
56.
Orth
,
R. C.
,
Schetz
,
J. A.
, and
Billig
,
F. S.
,
1969
, “
The Interaction and Penetration of Gaseous Jets in Supersonic Flow
,”
NASA
, Silver Spring, MD,
Report No. CR – 1386.
57.
Haven
,
B. A.
, and
Kurosaka
,
M.
,
1997
, “
Kidney and Anti-Kidney Vortices in Crossflow Jets
,”
J. Fluid Mech.
,
352
, pp.
27
64
.10.1017/S0022112097007271
58.
Jingwei
,
S.
,
Li
,
Z.
,
Zhanxue
,
W.
, and
Xiaolin
,
S.
,
2016
, “
Investigation on Flow-Field Characteristics and Performance of Shock Vector Control Nozzle Based on Confined Transverse Injection
,”
ASME J. Eng. Gas Turbines Power
,
138
(
10
), p.
101502
.10.1115/1.4033140
59.
Panitz
,
T.
, and
Wasan
,
D. T.
,
1972
, “
Flow Attachment to Solid Surfaces: The Coanda Effect
,”
Am. Inst. Chem. Eng. J.
,
18
(
1
), pp.
51
57
.10.1002/aic.690180111
60.
Lubert
,
C.
,
2012
, “
On Some Recent Applications of the Coanda Effect to Acoustics
,”
Proc. Meet. Acoust. 160ASA
,
11
(
1
), p.
040006
.10.1121/1.3694201
61.
Skotnicka-Siepsiak
,
A.
,
2018
, “
Hysteresis of the Coanda Effect
,”
ASME J. Fluids Eng.
,
140
(
1
), p.
011202
.10.1115/1.4037522
62.
Wing
,
D. J.
,
1994
, “
Static Investigation of Two Fluidic Thrust-Vectoring Concepts on a Two-Dimensional Convergent-Divergent Nozzle
,”
National Aeronautics and Space Administration, Langley Research Center
,
Hampton, VA
,
Report No. NASA TM 4574.
63.
Bharadwaj
,
K. K.
, and
Das
,
D.
,
2021
, “
Influence of Co-Flow on Buoyant Plume Puffing
,”
ASME J. Fluids Eng.
,
143
(
9
), p.
091303
.10.1115/1.4050729
64.
Parsons
,
C.
,
1988
, “
An Experimental and Theoretical Study of the Aero-Acoustics of External Coanda Gas Flares
,” Ph.D. thesis,
University of Exeter
,
Exeter, UK
.
65.
Mason
,
M.
, and
Crowther
,
W.
,
2002
, “
Fluidic Thrust Vectoring of Low Observable Aircraft
,”
CEAS Aerospace Aerodynamic Research Conference
,
Royal Aeronautical Society
, Vol.
39
,
Cambridge, UK
, pp.
10
12
.
66.
Saghafi
,
F.
, and
Banazadeh
,
A.
,
2006
, “
Co-Flow Fluidic Thrust Vectoring Requirements for Longitudinal and Lateral Trim Purposes
,”
AIAA
Paper No. 2006-4980.10.2514/6.2006-4980
67.
Garrett
,
B.
,
2019
, “
Fluid Flow Characteristics of a Co-Flow Slot Jet Thrust Augmentation Propulsion System
,” M.S. thesis,
University of Central Florida
, Orlando,
FL
.
68.
Heo
,
J. Y.
, and
Sung
,
H. G.
,
2012
, “
Fluidic Thrust Vector Control of Supersonic Jet Using Co-Flow Injection
,”
J. Propul. Power
,
28
(
4
), pp.
858
861
.10.2514/1.B34266
69.
Song
,
M. J.
,
Park
,
S. H.
, and
Lee
,
Y.
,
2014
, “
Application of Backstep Coanda Flap for Supersonic Coflowing Fluidic Thrust-Vector Control
,” AIAA J.,
52
(
10
), pp.
2355
2359
.
70.
Allen
,
D. S.
,
2008
, “
Axisymmetric Coanda-Assisted Vectoring
,” M.S. thesis,
Utah State University
,
Logan, UT
.
71.
Asady
,
A. A. A.
, and
Alhafid
,
H. H. S.
,
2015
, “
Theoretical and Experimental Study of Jet Vectoring in Subsonic Flow for Circular Nozzle
,”
J. Adv. Manuf. Technol.
,
9
(
2)
, pp.
1
12
.https://jamt.utem.edu.my/jamt/article/view/579
72.
Al-Asady
,
A. A. A.
, and
Abdullah
,
A. M.
,
2017
, “
Fluidic Thrust Vectoring Using Co-Flow Method
,”
Al-Nahrain J. Eng. Sci.
,
20
(
1
), pp.
5
–18
.https://www.iasj.net/iasj/download/febc940b272b0257
73.
Banazadeh
,
A.
, and
Saghafi
,
F.
,
2017
, “
An Investigation of Empirical Formulation and Design Optimisation of Co-Flow Fluidic Thrust Vectoring Nozzles
,”
Aeronaut. J.
,
121
(
1236
), pp.
213
236
.10.1017/aer.2016.110
74.
Trancossi
,
M.
, and
Dumas
,
A.
,
2011
, “
Coanda Synthetic Jet Deflection Apparatus and Control
,”
SAE
Paper No. 2011-01-2590.10.4271/2011-01-2590
75.
Trancossi
,
M.
, and
Dumas
,
A.
,
2011
, “
A.C.H.E.O.N: Aerial Coanda High Efficiency Orienting-Jet Nozzle
,”
SAE
Paper No. 2011-01-2737.10.4271/2011-01-2737
76.
Trancossi
,
M.
,
2011
, “
An Overview of Scientific and Technical Literature on Coanda Effect Applied to Nozzles
,”
SAE
Paper No. 2011-01-2591.10.4271/2011-01-2591
77.
Strykowski
,
P. J.
, and
Niccum
,
D. L.
,
1991
, “
The Stability of Counter-Current Mixing Layers in Circular Jets
,”
J. Fluid Mech.
,
227
, pp.
309
343
.10.1017/S0022112091000137
78.
Strykowski
,
P. J.
, and
Krothapalli
,
A.
,
1993
, “
The Counter-Current Mixing Layer: Strategies for Shear-Layer Control
,”
AIAA
Paper No. 1993-3260.10.2514/6.1993-3260
79.
Strykowski
,
P. J.
, and
Krothapalli
,
A.
,
1993
, “
Enhancement of Mixing in High-Speed Heated Jets Using a Counterflow Nozzle
,”
AIAA J.
,
31
(
11
), pp.
2033
2038
.10.2514/3.11887
80.
Alvi
,
F. S.
,
Strykowski
,
P. J.
,
Krothapalli
,
A.
, and
Forliti
,
D. J.
,
2000
, “
Vectoring Thrust in Multi-Axes Using Confined Shear Layers
,”
ASME J. Fluids Eng.
,
122
(
1
), pp.
3
13
.10.1115/1.483220
81.
Santos
,
M. M.
,
2005
, “
Experimental Study on Counter Flow Thrust Vectoring of a Gas Turbine Engine
,” Ph.D. thesis,
Florida State University
,
Tallahassee, FL
.
82.
Van der Veer
,
M. R.
, and
Strykowski
,
P. J.
,
1995
, “
Thrust Vector Control of Rectangular Jets Using Counter-Flow
,”
Minnesota University
,
Minneapolis, MN
, Report No. AFOSR-TR-95-0639.
83.
Zhao-Miao
,
L.
, and
Chuan
,
C.
,
2013
, “
Impact of the Angle of External Flow on the Performance of Counter-Flow Thrust Vectoring Nozzle
,”
IEEE International Conference on Mechanical and Automation Engineering
, Jiujang, China, July 21–23,
pp.
52
55
.10.1109/MAEE.2013.23
84.
Banazadeh
,
A.
, and
Banazadeh
,
F.
,
2014
, “
A Computational and Analytical Study Into the Use of Counter-Flow Fluidic Thrust Vectoring Nozzle for Small Gas Turbine Engines
,”
Appl. Mech. Mater.
,
629
, pp.
97
103
.10.4028/www.scientific.net/AMM.629.97
85.
Gillgrist
,
R. D.
,
1999
, “
A Fundamental Study of Thrust Vector Control Using Counter-Flow
,” M.S. thesis,
University of Minnesota
,
Minneapolis, MN
.
86.
Schmid
,
G. F.
,
1996
, “
Design and Optimization of a Counter-Flowing Thrust Vectoring System
,” M.S. thesis,
University of Minnesota
,
Minneapolis, MN
.
87.
Schmid
,
G. F.
,
Strykowski
,
P. J.
,
Madruga
,
M.
,
Das
,
D.
, and
Krothapalli
,
A.
,
2000
, “
Jet Attachment Behaviour Using Counter-Flow Thrust Vectoring
,”
Proceedings of the 13th ONR Propulsion Conference
,
Minneapolis, MN
, Aug. 10–12, pp.
63
68
.
88.
Dores
,
D.
,
Madruga Santos
,
M.
,
Krothapalli
,
A.
,
Lourenco
,
L.
,
Collins
,
E.
, Jr.
Alvi
,
F.
, and
Strykowski
,
P.
,
2006
, “
Characterization of a Counter-Flow Thrust Vectoring Scheme on a Gas Turbine Engine Exhaust Jet
,”
AIAA
Paper No. 2006-3516.10.2514/6.2006-3516
89.
Wu
,
K.
,
Kim
,
T.
, and
Kim
,
H.
,
2021
, “
Sensitivity Analysis of Counter-Flow Thrust Vector Control With a Three-Dimensional Rectangular Nozzle
,”
ASCE J. Aerosp. Eng.
,
34
(
1
), p.
04020107
.10.1061/(ASCE)AS.1943-5525.0001228
90.
Zhang
,
R. R.
,
Huang
,
W.
,
Li
,
L. Q.
,
Yan
,
L.
, and
Moradi
,
R.
,
2018
, “
Drag and Heat Flux Reduction Induced by the Pulsed Counter-Flowing Jet With Different Periods on a Blunt Body in Supersonic Flows
,”
Int. J. Heat Mass Transfer
,
127
, pp.
503
512
.10.1016/j.ijheatmasstransfer.2018.08.066
91.
Zhang
,
R. R.
,
Huang
,
W.
,
Li
,
L. Q.
,
Yan
,
L.
, and
Moradi
,
R.
,
2018
, “
Numerical Investigation of Drag and Heat Flux Reduction Mechanism of the Pulsed Counter-Flowing Jet on a Blunt Body in Supersonic Flows
,”
Acta Astronaut.
,
146
, pp.
123
133
.10.1016/j.actaastro.2018.02.040
92.
Wu
,
K.
,
Jin
,
Y.
, and
Kim
,
H. D.
,
2019
, “
Hysteretic Behaviors in Counter-Flow Thrust Vector Control
,”
ASCE J. Aerosp. Eng.
,
32
(
4
), p.
04019041
.10.1061/(ASCE)AS.1943-5525.0001027
93.
Miller
,
D. N.
,
Yagle
,
P. J.
, and
Hamstra
,
J. W.
,
1999
, “
Fluidic Throat Skewing for Thrust Vectoring in Fixed-Geometry Nozzles
,”
AIAA
Paper No. 99-0365.10.2514/6.99-0365
94.
Miller
,
D. N.
, and
Catt
,
J. A.
,
1995
, “
Conceptual Development of Fixed-Geometry Nozzles Using Fluidic Injection for Throat-Area Control
,”
AIAA
Paper No. 95-2603.10.2514/6.95-2603
95.
Yagle
,
P. J.
,
Miller
,
D. N.
,
Ginn
,
K. B.
, and
Hamstra
,
J. W.
,
2001
, “
Demonstration of Fluidic Throat Skewing for Thrust Vectoring in Structurally Fixed Nozzles
,”
ASME J. Eng. Gas Turbines Power
,
123
(
3
), pp.
502
507
.10.1115/1.1361109
96.
Deere
,
K. A.
,
Flamm
,
J. D.
,
Berrier
,
B. L.
, and
Johnson
,
S. K.
,
2007
, “
Computational Study of an Axisymmetric Dual Throat Fluidic Thrust Vectoring Nozzle for a Supersonic Aircraft Application
,”
AIAA
Paper No. 2007-5085.10.2514/6.2007-5085
97.
Flamm
,
J. D.
,
Deere
,
K. A.
,
Berrier
,
B. L.
,
Johnson
,
S. K.
, and
Mason
,
M. L.
,
2005
, “
Experimental Study of a Dual-Throat Fluidic Thrust-Vectoring Nozzle Concept
,”
AIAA
Paper No. 2005-3503.10.2514/6.2005-3503
98.
Wang
,
Y. S.
,
Xu
,
J. L.
,
Huang
,
S.
,
Lin
,
Y. C.
, and
Jiang
,
J. J.
,
2019
, “
Experimental and Numerical Investigation of an Axisymmetric Divergent Dual Throat Nozzle
,”
Proc. Inst. Mech. Eng., Part G J. Aerosp. Eng.
,
234
(
3
), pp.
563
572
.10.1177/0954410019872089
99.
Wang
,
Y.
,
Xu
,
J.
, and
Huang
,
S.
,
2017
, “
Study of Starting Problem of Axisymmetric Divergent Dual Throat Nozzle
,”
ASME J. Eng. Gas Turbines Power
,
139
(
6
), p.
062602
.10.1115/1.4035230
100.
Flamm
,
J. D.
,
Deere
,
K. A.
,
Mason
,
M. L.
,
Berrier
,
B. L.
, and
Johnson
,
S. K.
,
2006
, “
Design Enhancements of the Two-Dimensional, Dual Throat Fluidic Thrust Vectoring Nozzle Concept
,”
AIAA
Paper No. 2006-3701.10.2514/6.2006-3701
101.
Flamm
,
J. D.
,
Deere
,
K. A.
,
Mason
,
M. L.
,
Berrier
,
B. L.
, and
Johnson
,
S. K.
,
2007
, “
Experimental Study of an Axisymmetric Dual Throat Fluidic Thrust Vectoring Nozzle for a Supersonic Aircraft Application
,”
AIAA
Paper 2007-5084.10.2514/6.2007-5084
102.
Maruyama
,
Y.
,
Sakata
,
M.
, and
Takahashi
,
Y.
,
2022
, “
Performance Analyses of Fluidic Thrust Vector Control System Using Dual Throat Nozzle
,”
AIAA J.
,
60
(
3
), pp.
1730
1744
.10.2514/1.J059696
103.
Wu
,
K.
,
Kim
,
T. H.
, and
Kim
,
H. D.
,
2021
, “
Visualization and Analysis on the Thrust Vectoring Control in Three-Dimensional Dual-Throat Nozzles
,”
J. Visual.
,
24
, pp.
891
915
.10.1007/s12650-020-00734-y
104.
Bellandi
,
E. G.
, and
Slippey
,
A. J.
,
2009
, “
Preliminary Analysis and Design Enhancements of a Dual-Throat FTV Nozzle Concept
,”
AIAA
Paper No. 2009-3900.10.2514/6.2009-3900
105.
Wu
,
K.
, and
Kim
,
H. D.
,
2019
, “
Study on Fluidic Thrust Vector Control Based on Dual-Throat Concept
,”
J. Korean Soc. Propul. Eng.
,
23
(
1
), pp.
24
32
.6108/KSP E.2019.23.1.024
106.
Shin
,
C. S.
,
Kim
,
H. D.
,
Setoguchi
,
T.
, and
Matsuo
,
S.
,
2010
, “
A Computational Study of Thrust Vectoring Control Using Dual Throat Nozzle
,”
J. Therm. Sci.
,
19
(
6
), pp.
486
490
.10.1007/s11630-010-0413-x
107.
Gu
,
R.
, and
Xu
,
J.
,
2014
, “
Effects of Cavity on the Performance of Dual Throat Nozzle During the Thrust-Vectoring Starting Transient Process
,”
ASME J. Eng. Gas Turbines Power
,
136
(
1
), p.
014502
.10.1115/1.4025243
108.
Wang
,
Y.
,
Xu
,
J.
,
Huang
,
S.
,
Lin
,
Y.
, and
Jiang
,
J.
,
2019
, “
Computational Study of Axisymmetric Divergent Bypass Dual Throat Nozzle
,”
Aerosp. Sci. Technol.
,
86
, pp.
177
190
.10.1016/j.ast.2018.11.059
109.
Gu
,
R.
,
Xu
,
J. L.
, and
Guo
,
S.
,
2014
, “
Experimental and Numerical Investigations of a Bypass Dual Throat Nozzle
,”
ASME J. Eng. Gas Turbines Power
,
136
(
8
), p.
084501
.10.1115/1.4026943
110.
Hamedi-Estakhrsar
,
M. H.
, and
Mahdavy-Moghaddam
,
H.
,
2021
, “
Experimental Evaluation and Numerical Simulation of Performance of the Bypass Dual Throat Nozzle
,”
Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng.
,
235
(
7
), pp.
768
781
.10.1177/0954410020959886
111.
Wang
,
Y.
,
Xu
,
J.
,
Huang
,
S.
,
Jiang
,
J.
, and
Pan
,
R.
,
2020
, “
Design and Preliminary Analysis of the Variable Axisymmetric Divergent Bypass Dual Throat Nozzle
,”
ASME J. Fluids Eng.
,
142
(
6
), p.
061204
.10.1115/1.4045996
112.
Wu
,
K.
, and
Kim
,
H. D.
,
2021
, “
A Fluidic Thrust Vector Control Using the Bypass Flow in a Dual Throat Nozzle
,”
J. Mech. Sci. Technol., Korean Soc. Mech. Eng.
,
35
(
8
), pp.
3435
3443
.10.1007/s12206-021-0716-8
113.
Smith
,
B. L.
, and
Glezer
,
A.
,
1998
, “
The Formation and Evolution of Synthetic Jets
,”
Phys. Fluids
,
10
(
9
), pp.
2281
2297
.10.1063/1.869828
114.
Azzawi
,
I. D. J.
,
Jaworski
,
A. J.
, and
Mao
,
X.
,
2021
, “
An Overview of Synthetic Jet Under Different Clamping and Amplitude Modulation Techniques
,”
ASME J. Fluids Eng.
,
143
(
3
), p.
031501
.10.1115/1.4048930
115.
Glezer
,
A.
, and
Amitay
,
M.
,
2002
, “
Synthetic Jets
,”
Annu. Rev. Fluid Mech.
,
34
(
1
), pp.
503
529
.10.1146/annurev.fluid.34.090501.094913
116.
Smith
,
B. L.
, and
Swift
,
G. W.
,
2001
, “
Synthetic Jets at Large Reynolds Number and Comparison to Continuous Jets
,”
AIAA
Paper No. 2001-3030.10.2514/6.2001-3030
117.
Smith
,
B. L.
, and
Glezer
,
A.
,
2002
, “
Jet Vectoring Using Synthetic Jets
,”
J. Fluid Mech.
,
458
, pp.
1
34
.10.1017/S0022112001007406
118.
Nicholls
,
C. J.
,
Tang
,
B. M.
,
Turner
,
J.
, and
Bacic
,
M.
,
2022
, “
Novel Operating Mode of a Fluidic Operator
,”
ASME J. Fluids Eng.
,
144
(
7
), p.
071501
.10.1115/1.4053554
119.
Smith
,
B. L.
, and
Glezer
,
A.
,
1994
, “
Vectoring a High Aspect Ratio Rectangular Air Jet Using a Zero-Net-Mass-Flux Control Jet
,”
Bull. Am. Phys. Soc.
,
39
, pp.
1894
1902
.https://cir.nii.ac.jp/crid/1570572700266374912
120.
Smith
,
B. L.
, and
Glezer
,
A.
,
1997
, “
Vectoring and Small-Scale Motions Effected in Free Shear Flows Using Synthetic Jet Actuators
,”
AIAA
Paper No. 97-0213.10.2514/6.97-0213
121.
Guo
,
D.
, and
Cary
,
A. W.
,
2001
, “
Vectoring Control of a Primary Jet With Synthetic Jets
,”
AIAA
Paper No. 2001-0738.10.2514/6.2001-0738
122.
Luo
,
Z. B.
,
Xia
,
Z. X.
, and
Hu
,
J. X.
,
2004
, “
Numerical Simulation of Synthetic Jet Flow Field and Parameter Analysis of Actuator
,”
J. Propul. Technol.
,
25
(
3
), pp.
199
205
.10.3321/j.issn:1001-4055.2004.03.003
123.
Luo
,
Z.
, and
Xia
,
Z.
,
2005
, “
The Mechanism of Jet Vectoring Using Synthetic Jet Actuators
,”
Mod. Phys. Lett. B
,
19
(
28–29
), pp.
1619
1622
.10.1142/S0217984905010050
124.
Luo
,
Z. B.
, and
Xia
,
Z. X.
,
2005
, “
A Novel Valve-Less Synthetic Jet-Based Micro-Pump
,”
Sens. Actuators A
,
122
(
1
), pp.
131
140
.10.1016/j.sna.2005.03.062
125.
Xia
,
Z. X.
, and
Luo
,
Z. B.
,
2007
, “
Physical Factors of Primary Jet Vectoring Control Using Synthetic Jet Actuators
,”
Appl. Math. Mech.
,
28
(
7
), pp.
907
920
.10.1007/s10483-007-0708-z
126.
Luo
,
Z. B.
,
Xia
,
Z. X.
, and
Liu
,
B.
,
2006
, “
New Generation of Synthetic Jet Actuators
,”
AIAA J.
,
44
(
10
), pp.
2418
2419
.10.2514/1.20747
127.
Deng
,
X.
,
Xia
,
Z. X.
,
Luo
,
Z. B.
, and
Li
,
Y. J.
,
2015
, “
Vector-Adjusting Characteristic of Dual-Synthetic-Jet Actuator
,”
AIAA J.
,
53
(
3
), pp.
794
797
.10.2514/1.J053415
128.
Zhao
,
Z.
,
Luo
,
Z.
,
Deng
,
X.
,
Liu
,
Z.
, and
Li
,
S.
,
2021
, “
Theoretical Modelling of Vectoring Dual Synthetic Jet Based on Regression Analysis
,”
Chin. J. Aeronaut.
,
34
(
3
), pp.
1
12
.10.1016/j.cja.2020.07.020
129.
Geng
,
L.
,
Hu
,
Z.
, and
Lin
,
Y.
,
2019
, “
Thrust and Flow Characteristic of Double Synthetic Jet Actuator Underwater
,”
Ocean Eng.
,
176
, pp.
84
96
.10.1016/j.oceaneng.2019.02.036
130.
Jankee
,
G. K.
, and
Ganapathisubramani
,
B.
,
2021
, “
Interaction and Vectoring of Parallel Rectangular Twin Jets in a Turbulent Boundary Layer
,”
Phys. Rev. Lett.
,
6
(
4
), p.
044701
.10.1103/PhysRevFluids.6.044701
131.
Alimohammadi
,
S.
,
Fanning
,
E.
,
Persoons
,
T.
, and
Murray
,
D. B.
,
2016
, “
Characterization of Flow Vectoring Phenomenon in Adjacent Synthetic Jets Using CFD and PIV
,”
Comput. Fluids
,
140
, pp.
232
246
.10.1016/j.compfluid.2016.09.022
132.
Smith
,
B. L.
, and
Glezer
,
A.
,
2005
, “
Vectoring of Adjacent Synthetic Jets
,”
AIAA J.
,
43
(
10
), pp.
2117
2124
.10.2514/1.12910
133.
Luo
,
Z. B.
, and
Xia
,
Z. X.
,
2008
, “
PIV Measurements and Mechanisms of Adjacent Synthetic Jet Interactions
,”
Chin. Phys. Lett.
,
25
(
2
), pp.
612
615
.10.1088/0256-307X/25/2/070
134.
Xue
,
F.
,
Yunsong
,
G.
,
Wang
,
Y.
, and
Qin
,
H.
,
2021
, “
Research on Control Effectiveness of Fluidic Thrust Vectoring
,”
Sci. Prog.
,
104
(
1
), pp.
1
17
.10.1177/0036850421998137
You do not currently have access to this content.