This paper reports a numerical investigation of the transcritical droplet vaporization phenomena. The simulation is based on the time-dependent conservation equations for liquid and gas phases, pressure-dependent variable thermophysical properties, and a detailed treatment of liquid-vapor phase equilibrium at the droplet surface. The numerical solution of the two-phase equations employs an arbitrary Eulerian-Lagrangian, explicit-implicit method with a dynamically adaptive mesh. Three different equations of state (EOS), namely the Redlich-Kwong (RK), the Peng-Robinson (PR), and Soave-Redlich-Kwong (SRK) EOS, are employed to represent phase equilibrium at the droplet surface. In addition, two different methods are used to determine the liquid density. Results indicate that the predictions of RK-EOS are significantly different from those obtained by using the RK-EOS and SRK-EOS. For the phase-equilibrium of n-heptane-nitrogen system, the RK-EOS predicts higher liquid-phase solubility of nitrogen, higher fuel vapor concentration, lower critical-mixing-state temperature, and lower enthalpy of vaporization. As a consequence, it significantly overpredicts droplet vaporization rates, and underpredicts droplet lifetimes compared to those predicted by PR and SRK-EOS. In contrast, predictions using the PR-EOS and SRK-EOS show excellent agreement with each other and with experimental data over a wide range of conditions. A detailed investigation of the transcritical droplet vaporization phenomena indicates that at low to moderate ambient temperatures, the droplet lifetime first increases and then decreases as the ambient pressure is increased. At high ambient temperatures, however, the droplet lifetime decreases monotonically with pressure. This behavior is in accord with the reported experimental data.

1.
Manrique
,
J. A.
, and
Borman
,
G. L.
,
1969
, “
Calculation of Steady State Droplet Vaporization at High Ambient Pressures
,”
Int. J. Heat Mass Transf.
,
12
, pp.
1081
1095
.
2.
Chueh
,
P. L.
, and
Prausnitz
,
J. M.
,
1968
, “
Calculation of High Pressure Vapor-Liquid Equilibria
,”
Ind. Eng. Chem.
,
60
, pp.
34
52
.
3.
Savery, C. W., and Borman, G. L., 1970, “Experiments on Droplet Vaporization at Supercritical Pressures,” AIAA Paper No. 70-6.
4.
Lazar, R. S., and Faeth, G. M., 1971, “Bipropellant Droplet Combustion in the Vicinity of the Critical Point,” Proc. 13th Symp. on Combustion, The Combustion Institute, Pittsburgh, PA, pp. 801–811.
5.
Canada, G. S., and Faeth, G. M., 1973, “Fuel Droplet Burning Rates at High Pressures,” Proc. of 14th Symp. on Combustion, The Combustion Institute, Pittsburgh, PA, pp. 1345–1354.
6.
Matlosz
,
R. L.
,
Leipziger
,
S.
, and
Torda
,
T. P.
,
1972
, “
Investigation of Liquid Drop Evaporation in a High Temperature and High Pressure Environment
,”
Int. J. Heat Mass Transf.
,
15
, pp.
831
852
.
7.
Curtis
,
E. W.
, and
Farrell
,
P. V.
,
1988
, “
Droplet Vaporization in a Supercritical Microgravity Environment
,”
Acta Astronaut.
,
17
, pp.
1189
1193
.
8.
Curtis
,
E. W.
, and
Farrell
,
P. V. A.
,
1992
, “
Numerical Study of High-Pressure Droplet Vaporization
,”
Combust. Flame
,
90
, pp.
85
102
.
9.
Peng
,
D.
, and
Robinson
,
D. B.
,
1976
, “
A New Two-Constant Equation of State
,”
Ind. Eng. Chem. Fundam.
,
15
, pp.
59
64
.
10.
Hsieh
,
K. C.
,
Shuen
,
J. S.
, and
Yang
,
V.
,
1991
, “
Droplet Vaporization in High Pressure Environments I: Near Critical Conditions
,”
Combust. Sci. Technol.
,
76
, pp.
111
132
.
11.
Graboski
,
M. S.
, and
Daubert
,
T. E.
,
1987
, “
A Modified Soave Equation of State for Phase Equilibrium Calculations I: Hydrocarbon Systems
,”
Ind. Eng. Chem. Process Des. Dev.
,
17
, pp.
443
337
.
12.
Shuen
,
J. S.
,
Tang
,
V.
, and
Hsiao
,
C. C.
,
1992
, “
Combustion of Liquid-Fuel Droplets in Supercritical Conditions
,”
Combust. Flame
,
89
, pp.
299
319
.
13.
Delplanque
,
J. P.
, and
Sirignano
,
W. A.
,
1993
, “
Numerical Study of the Transient Vaporization of an Oxygen Droplet at Sub- and Super-Critical Conditions
,”
Int. J. Heat Mass Transf.
,
36
, pp.
303
314
.
14.
Jia
,
H.
, and
Gogos
,
G.
,
1993
, “
High Pressure Droplet Vaporization; Effects of Liquid-Phase Gas Solubility
,”
Int. J. Heat Mass Transf.
,
36
, pp.
4419
4431
.
15.
Jia
,
H.
, and
Gogos
,
G.
,
1992
, “
Investigation of Liquid Droplet Evaporization in Subcritical and Supercritical Gaseous Environments
,”
J. Thermophys. Heat Transfer
,
6
, pp.
738
745
.
16.
Stengele, J., Bauer, H. J., and Wittig, S., 1996, “Numerical Study of Bicomponent Droplet Vaporization in a High Pressure Environment,” Presented at the International Gas Turbine and Aeroengine Congress & Exhibition, Birmingham, UK, Paper No. 96-GT-442.
17.
Aggarwal, S. K., Shu, Z., Mongia, H., and Hura, H. S., 1998, “Multicomponent and Single-Component Fuel Droplet Evaporation Under High Pressure Conditions,” AIAA Paper No. 98-3833.
18.
Faeth
,
G. M.
,
1977
, “
Current Status of Droplet and Liquid Combustion
,”
Prog. Energy Combust. Sci.
,
3
, pp.
191
224
.
19.
Givler
,
S. D.
, and
Abraham
,
J.
,
1996
, “
Supercritical Droplet Vaporization and Combustion Studies
,”
Prog. Energy Combust. Sci.
,
22
, pp.
1
28
.
20.
Kadota, T., and Hiroyasu, H., 1982, “Combustion of a Fuel Droplet in Supercritical Gaseous Environments,” Proc. 18th Symp. on Combustion, The Combustion Institute, Pittsburgh, PA, pp. 275–282.
21.
Nomura, H., Ujiie, Y., Rath, H. J., Sato, J., and Kono, M., 1996, “Experimental Study of High-Pressure Droplet Evaporation Using Microgravity Conditions,” Proc. 26th Symp. on Combustion, The Combustion Institute, Pittsburgh, PA, pp. 1267–1273.
22.
Reid, R. C., Prausnitz, J. M., and Poling, B. E., 1987, The Properties of Gases and Liquids, McGraw-Hill, New York.
23.
Knapp, H., Doring, R., Oellrich, L., Plocker, U., and Prausnitz, J. M., 1982, “Vapor-Liquid Equilibria for Mixture of Low Boiling Substances,” Chem. Eng. Data, Series, Vol. VI, DECHEMA, Frankfurt.
24.
Chung
,
T. H.
,
Ajlan
,
M.
,
Lee
,
L. L.
, and
Starling
,
K. E.
,
1988
, “
Generalized Multiparameter Correlation for Nonpolar and Polar Fluid Transport Properties
,”
Ind. Eng. Chem.
,
27
, pp.
671
679
.
25.
Neufeld
,
P. D.
,
Janzen
,
A. R.
, and
Aziz
,
R. A.
,
1972
, “
Empirical Equations to Calculate 16 of the Transport Collision Integrals Ωl,s for the Lennard-Jones Potential
,”
J. Chem. Phys.
,
57
, pp.
1100
1102
.
26.
Takahashi
,
S.
,
1974
, “
Preparation of a Generalized Chart for the Diffusion Coefficients of Gases at High Pressures
,”
J. Chem. Eng.
6
, pp.
417
420
.
27.
Bird, R. B., Stewart, W. E., and Lightfoot, E. N., 1960, Transport Phenomena, John Wiley and Sons, New York.
28.
Byung
,
I. L.
, and
Michael
,
G. K.
,
1975
, “
A Generalized Thermodynamic Correlation Based on Three-Parameter Corresponding States
,”
AIChE J.
,
21
, pp.
510
527
.
29.
Filippov
,
L. P.
,
1956
, “
Thermal Conduction of Solutions in Associated Liquids: Thermal Conduction of 50 Organic Liquids
,”
Chem. Abstr.
,
50
, Col. 8276.
30.
Nakanishi
,
K.
,
1978
, “
Prediction of Diffusion Coefficients of Nonelectrolytes in Dilute Solution Based on Generalized Hammond-Strokes Plot
,”
Ind. Eng. Chem. Fundam.
,
17
, pp.
253
256
.
31.
Hankinson
,
R. W.
, and
Thomson
,
G. H.
,
1979
, “
A New Correlation for Saturated Densities of Liquids and Their Mixtures
,”
AIChE J.
,
25
, pp.
653
663
.
32.
Thomson
,
G. H.
,
Brobst
,
K. R.
, and
Hankinson
,
R. W.
,
1982
, “
An Improved Correlation for Densities of Compressed Liquids and Liquid Mixtures
,”
AIChE J.
,
28
, pp.
671
676
.
You do not currently have access to this content.