The paper describes the effects of forced harmonic oscillations of fixed frequency and amplitudes in the range Λ=Um/Ub=1-11 on the characteristics of a turbulent pipe flow with a bulk Reynolds number of 5900. The resulting Stokes layer δ is a fraction of the pipe radius χ=R/δ=53 so that the vorticity associated to the oscillating motion is generated in a small near wall region. The analysis is carried out processing a set of statistically independent samples obtained from wall-resolved large eddy simulations (LES); time and space averaged global quantities, extracted for the sake of comparison with recent experimental data, confirm the presence of a non-negligible drag reduction phenomenon. Phase averaged profiles of the Reynolds stress tensor components provide valuable material for the comprehension of the effects of the time varying mean shear upon the near wall turbulent flow structures. The large scales of motion are directly computed through numerical integration of the space filtered three-dimensional Navier-Stokes equations with a spectrally accurate code; the subgrid scale terms are parametrized with a dynamic procedure.

1.
Tardu
,
S. F.
,
Binder
,
G.
, and
Blackwelder
,
R. F.
,
1994
, “
Turbulent Channel Flow With Large-Amplitude Velocity Oscillations
,”
J. Fluid Mech.
,
267
, pp.
109
151
.
2.
Akhavan
,
R.
,
Kamm
,
R. D.
, and
Shapiro
,
A. H.
,
1991
, “
An Investigation of Transition to Turbulence in Bounded Oscillatory Stokes Flows Part 1. Experiments
,”
J. Fluid Mech.
,
225
, pp.
395
442
.
3.
Tu
,
S. W.
, and
Ramaprian
,
B. R.
,
1983
, “
Fully Developed Periodic Turbulent Pipe Flow. Part 1. Main Experimental Results and Comparison With Predictions
,”
J. Fluid Mech.
,
137
, pp.
31
58
.
4.
Tu
,
S. W.
, and
Ramaprian
,
B. R.
,
1983
, “
Fully Developed Periodic Turbulent Pipe Flow. Part 2. The Detailed Structure of the Flow
,”
J. Fluid Mech.
,
137
, pp.
59
81
.
5.
Mao
,
Z. X.
, and
Hanratty
,
T. J.
,
1986
, “
Studies of the Wall Shear Stress in a Turbulent Pulsating Pipe Flow
,”
J. Fluid Mech.
,
170
, pp.
545
565
.
6.
Mao
,
Z. X.
, and
Hanratty
,
T. J.
,
1994
, “
Influence of Large-Amplitude Oscillations on Turbulent Drag
,”
AIChE J.
,
40
(
10
), pp.
1601
1610
.
7.
Tardu
,
S. F.
, and
Binder
,
G.
,
1993
, “
Wall Shear Stress Modulation in Unsteady Turbulent Channel Flow With High Imposed Frequencies
,”
Phys. Fluids
,
5
, pp.
2028
2034
.
8.
Lodahl
,
C. R.
,
Sumer
,
B. M.
, and
Fredosoe
,
J.
,
1998
, “
Turbulent Combined Oscillatory Flow and Current in a Pipe
,”
J. Fluid Mech.
,
373
, pp.
313
348
.
9.
Scotti
,
A.
, and
Piomelli
,
U.
,
2001
, “
Numerical Simulation of Pulsating Turbulent Channel Flow
,”
Phys. Fluids
,
13
(
5
), pp.
1367
1384
.
10.
Lilly
,
D. K.
,
1992
, “
A Proposed Modification of the Germano Subgrid-Scale Closure Method
,”
Phys. Fluids
,
4
(
3
), pp.
633
635
.
11.
Germano
,
M.
,
Piomelli
,
U.
,
Moin
,
P.
, and
Cabot
,
W. H.
,
1991
, “
A Dynamic Subgrid Scale Eddy Viscosity Model
,”
Phys. Fluids
,
3
, pp.
1760
1767
.
12.
Piomelli
,
U.
,
1993
, “
High Reynolds Number Calculations Using the Dynamic Subgrid Scale Stress Model
,”
Phys. Fluids
,
5
(
6
),
1484
1490
.
13.
Manna
,
M.
, and
Vacca
,
A.
,
1999
, “
An Efficient Method for the Solution of the Incompressible Navier-Stokes Equations in Cylindrical Geometries
,”
J. Comput. Phys.
,
151
, pp.
563
584
.
14.
Eggels
,
J. G. M.
,
Unger
,
F.
,
Weiss
,
M. H.
,
Westerweel
,
J.
,
Adrian
,
R. J.
,
Friedrich
,
R.
, and
Nieuwstadt
,
F. T. M.
,
1994
, “
Fully Developed Turbulent Pipe Flow: A Comparison Between Direct Numerical Simulation and Experiments
,”
J. Fluid Mech.
,
268
, pp.
175
209
.
15.
Hino
,
M.
,
Sawamoto
,
M.
, and
Takasu
,
S.
,
1976
, “
Experiments on Transition to Turbulence in an Oscillatory Pipe Flow
,”
J. Fluid Mech.
,
75
, pp.
193
207
.
16.
Jensen
,
B.
,
Sumer
,
B.
, and
Fredosoe
,
J.
,
1989
, “
Turbulent Oscillatory Boundary Layers at High Reynolds Number
,”
J. Fluid Mech.
,
206
, pp.
265
297
.
You do not currently have access to this content.