Abstract

The present paper focuses on the numerical modeling approaches adopted in boundary layer ingestion (BLI) studies. Three driving aircraft concepts have been identified, namely propulsive fuselage concept (PFC), rear engines concept (REC), and distributed fans concept (DFC). The affiliation to relevant research projects has been considered. Specifically, European projects DisPURSAL and CENTRELINE, NASA projects STARC-ABL, D8, and N3-X, as well as ONERA projects NOVA and DRAGON have been examined, together with other significant works. The methodologies adopted by the reviewed analyses have been investigated and summarized for each concept, in order to assess the main trends of BLI modeling strategies.

References

1.
EC, Flightpath 2050
,
2011
, “
Europe's Vision for Aviation, Report of the High Level Group on Aviation Research
,” Report of the High Level Group on Aviation Research.https://ec.europa.eu/transport/sites/transport/files/modes/air/doc/flightpath2050.pdf
2.
ACARE
,
2017
, “Delivering Europe’s Vision for Aviation,”
Strategic Research and Innovation Agenda
, Volume 1.https://www.asd-europe.org/delivering-europe%E2%80%99s-vision-for-aviation-acare-strategic-research-and-innovation-agenda-update
3.
EASA
,
2019
, “
European Aviation Environmental Report,
” EASA, Cologne, Germany.https://ec.europa.eu/transport/sites/transport/files/2019-aviation-environmental-report.pdf
4.
Suder
,
K.
,
2012
, “
Overview of the NASA Environmentally Responsible Aviation Project's Propulsion Technology Portfolio
,”
AIAA
Paper No. 2012-4038.10.2514/2012-4038
5.
NASA
,
2017
, “
Strategic Implementation Plan
,” NASA, Washington, DC, Report No.
NP-2017-01-2352-HQ
.https://www.nasa.gov/sites/default/files/atoms/files/sip-2017-03-23-17-high.pdf
6.
Tong
,
M. T.
,
Jones
,
S. M.
,
Haller
,
W. J.
, and
Handschuh
,
R. F.
, “
Engine Conceptual Design Studies for a Hybrid Wing Body Aircraft
,” NASA Glenn Research Center, Cleveland, OH, Report No.
NASA TM-2009-215680
.https://ntrs.nasa.gov/citations/20090042817
7.
Atinault, O., Carrier
,
G.
,
Grenon
,
R.
,
Verbecke
,
C.
,
Viscat
,
P.
, and
Méheut
,
M.
,
2014
, “
Numerical and Experimental Investigations of the Boundary Layer Ingestion (BLI) and Distributed Propulsion Concepts
,” CEAS-SCAD, Toulouse, France, Nov. 25–27, Presentation.
8.
Smith
,
L. H.
,
1993
, “
Wake Ingestion Propulsion Benefit
,”
J. Propul. Power
,
9
(
1
), pp.
74
82
.10.2514/3.11487
9.
Drela
,
M.
,
2009
, “
Power Balance in Aerodynamic Flows
,”
AIAA
Paper No. 2009-3762.10.2514/2009-3762
10.
Lv
,
P.
,
Rao
,
A. G.
,
Ragni
,
D.
, and
Veldhuis
,
L.
,
2016
, “
Performance Analysis of Wake and Boundary-Layer Ingestion for Aircraft Design
,”
J. Aircr.
,
53
(
5
), pp.
1517
1526
.10.2514/1.C033395
11.
Hall
,
D. K.
,
Huang
,
A. C.
,
Uranga
,
A.
,
Greitzer
,
E. M.
,
Drela
,
M.
, and
Sato
,
S.
,
2017
, “
Boundary Layer Ingestion Benefit for Transport Aircraft
,”
J. Propul. Power
,
33
(
5
), pp.
1
12
.10.2514/1.B36321
12.
Arntz
,
A.
,
Atinault
,
O.
,
Destarac
,
D.
, and
Merlen
,
A.
,
2014
, “
Exergy-Based Aircraft Aeropropulsive Performance Assessment: CFD Application to Boundary Layer Ingestion
,”
AIAA
Paper No. 2014-2573.10.2514/2014-2573
13.
Lord
,
W. K.
,
Tillmann
,
G.
,
Ochs
,
S. S.
,
Cai
,
X.
, and
Moffitt
,
B.
,
2019
, “
A Performance Methodology for Ducted Boundary Layer Ingesting Propulsion
,”
AIAA
Paper No. 2019-1450.10.2514/2019-1450
14.
Kim
,
H. D.
,
2010
, “
Distributed Propulsion Vehicles
,”
27th International Congress of the Aeronautical Sciences
, Nice, France, Sept. 19–24, Paper No. ICAS 2010-1.1.3.https://www.researchgate.net/publication/289763492_Distributed_propulsion_vehicles
15.
Jansen
,
R. H.
,
Bowman
,
C.
,
Jankovsky
,
A.
,
Dyson
,
R.
, and
Felder
,
J. L.
,
2017
, “
Overview of NASA Electrified Aircraft Propulsion Research for Large Subsonic Transports
,”
AIAA Paper No. 2017-4700.
10.2514/AIAA-2017-4700
16.
Seitz
,
A.
, and
Gologan
,
C.
,
2015
, “
Parametric Design Studies for Propulsive Fuselage Aircraft Concepts
,”
CAES Aeronaut. J.
,
6
(
1
), pp.
69
82
.10.1007/s13272-014-0130-3
17.
Kim
,
H. D.
,
Perry
,
A. T.
, and
Ansell
,
P. J.
,
2018
, “
A Review of Distributed Electric Propulsion Concepts for Air Vehicle Technology
,”
AIAA
Paper No. 2018-4998.10.2514/2018-4998
18.
Seitz
,
A.
,
Peter
,
F.
,
Bijewitz
,
J.
,
Habermann
,
A.
,
Goraj
,
Z.
,
Kowalski
,
M.
,
Pardo
,
A. C.
,
Hall
,
C.
,
Meller
,
F.
,
Merkler
,
R.
,
Petit
,
O.
,
Samuelsson
,
S.
,
Corte
,
B. D.
, and
Dietz
,
M.
,
2018
, “
Concept Validation Study for Fuselage Wake-Filling Propulsion Integration
,”
31st Congress of the International Council of the Aeronautical Sciences
, Belo Horizonte, Brazil, Sept. 9–14, Paper No. ICAS 2018_0342.https://www.icas.org/ICAS_ARCHIVE/ICAS2018/data/papers/ICAS2018_0342_paper.pdf
19.
Longley
,
J. P.
, and
Greitzer
,
E. M.
,
1992
, “
Inlet Distortion Effects in Aircraft Propulsion System Integration
,”
Steady Transient Performance Prediction Gas Turbine Engines
,
AGARD
,
Neuilly sur Seine, France
, pp.
1
18
.https://www.semanticscholar.org/paper/Inlet-distortion-effects-in-aircraft-propulsion-Longley-Greitzer/de9064612fbed972fafc8da9ef31f39a7f326c4f
20.
SAE
,
1999
, “Inlet Total Pressure Distortion Considerations for Gas Turbine Engines,” SAE International, Warrendale, PA, Standard No.
AIR1419 Revision A
.https://www.sae.org/standards/content/air1419a/
21.
Giannakakis
,
P.
,
Maldonado
,
Y. B.
,
Tantot
,
N.
,
Frantz
,
C.
, and
Belleville
,
M.
,
2019
, “
Fuel Burn Evaluation of a Turbo-Electric Propulsive Fuselage Aircraft
,”
AIAA
Paper No. 2019-4181.10.2514/2019-4181
22.
Brelje
,
B. J.
, and
Martins
,
J. R. R. A.
,
2019
, “
Electric, Hybrid, and Turboelectric Fixed-Wing Aircraft: A Review of Concepts, Models and Design Approaches
,”
Prog. Aerosp. Sci.
,
104
(
1
), pp.
1
19
.10.1016/j.paerosci.2018.06.004
23.
Steiner
,
H. J.
,
Seitz
,
A.
,
Wieczorek
,
K.
,
Plötner
,
K.
,
Isikveren
,
A. T.
, and
Hornung
,
M.
,
2012
, “
Multi-Disciplinary Design and Feasibility Study of Distributed Propulsion Systems
,”
28th International Congress of the Aeronautical Sciences
, Brisbane, Australia, Sept. 23–28, Paper No. ICAS 2012-1.7.5.https://www.researchgate.net/publication/274705623_Multi-disciplinary_Design_and_Feasibility_Study_of_Distributed_Propulsion_Systems
24.
Kirner
,
R.
,
Raffaelli
,
L.
,
Rolt
,
A.
,
Laskaridis
,
P.
,
Doulgeris
,
G.
, and
Singh
,
R.
,
2015
, “
An Assessment of Distributed Propulsion: Advanced Propulsion System Architectures for Conventional Aircraft Configurations
,”
Aerosp. Sci. Technol.
,
46
(
1
), pp.
42
50
.10.1016/j.ast.2015.06.022
25.
Plas
,
A. P.
,
Sargeant
,
M. A.
,
Madani
,
V.
,
Crichton
,
D.
,
Greitzer
,
E. M.
,
Hynes
,
T. P.
, and
Hall
,
C. A.
,
2007
, “
Performance of a Boundary Layer Ingesting (BLI) Propulsion System
,”
AIAA
Paper No. 2007-450.10.2514/2007-450
26.
Hendricks
,
E. S.
,
2018
, “
A Review of Boundary Layer Ingestion Modeling Approaches for Use in Conceptual Design
,” NASA Glenn Research Center, Cleveland, OH, Report No.
NASA TM-2018-219926
.https://core.ac.uk/download/pdf/161999283.pdf
27.
Elmiligui
,
A. A.
,
Fredericks
,
W. J.
,
Guynn
,
M. D.
, and
Campbell
,
R. L.
,
2013
, “
Numerical Investigation of Fuselage Boundary Layer Ingestion Propulsion Techniques
,”
AIAA
Paper No. 2013-4402.10.2514/2013-4402
28.
Ochs
,
S. S.
,
Tillman
,
G.
,
Joo
,
J.
, and
Voytovych
,
D. M.
,
2017
, “
Computational Fluid Dynamics-Based Analysis of Boundary Layer Ingesting Propulsion
,”
J. Propul. Power
,
33
(
2
), pp.
522
530
.10.2514/1.B36069
29.
Schnell
,
R.
,
Zhao
,
X.
,
Rallis
,
E.
,
Kavvalos
,
M.
,
Sahoo
,
S.
,
Schnoes
,
M.
, and
Kyprianidis
,
K.
,
2019
, “
Assessment of a Turbo–Electric Aircraft Configuration With Aft–Propulsion Using Boundary Layer Ingestion
,”
Aerospace
,
6
(
12
), pp.
134
177
.10.3390/aerospace6120134
30.
Meller
,
F.
, and
Kocvara
,
F.
,
2018
, “
D1.02 Specification of Propulsive Fuselage Aircraft Layout and Design Features
,” CENTRELINE Deliverable.
31.
Isikveren
,
A. T.
,
Seitz
,
A.
,
Bijewitz
,
J.
,
Mirzoyan
,
A.
,
Isyanov
,
A.
,
Grenon
,
R.
,
Atinault
,
O.
,
Godard
,
J. L.
, and
Stückl
,
S.
,
2015
, “
Distributed Propulsion and Ultra-High by-Pass Rotor Study at Aircraft Level
,”
Aeronaut. J.
,
119
(
1221
), pp.
1327
1376
.10.1017/S0001924000011295
32.
Bijewitz
,
J.
,
Seitz
,
A.
, and
Hornung
,
M.
,
2018
, “
Extended Design Studies for a Mechanically Driven Propulsive Fuselage Aircraft Concept
,”
AIAA
Paper No. 2018–0408.10.2514/2018-0408
33.
Welstead
,
J. R.
, and
Felder
,
J. L.
,
2016
, “
Conceptual Design of a Single-Aisle Turboelectric Commercial Transport With Fuselage Boundary Layer Ingestion
,”
AIAA
Paper No. 2016–1027.10.2514/2016-1027
34.
Isikveren
,
A. T.
,
Seitz
,
A.
,
Bijewitz
,
J.
,
Hornung
,
M.
,
Mirzoyan
,
A.
,
Isyanov
,
A.
,
Godard
,
L. J.
,
Stückl
,
S.
, and
van Toor
,
J.
,
2014
, “
Recent Advances in Airframe-Propulsion Concepts With Distributed Propulsion
,”
29th Congress of the International Council of the Aeronautical Sciences
, St. Petersburg, Russia, Sept. 7–12, Paper No. ICAS 2014_0853.https://hal.archives-ouvertes.fr/hal-01079572/document
35.
Seitz
,
A.
, and
Gologan
,
C.
,
2013
, “
Parametric Design Studies for Propulsive Fuselage Aircraft Concepts
,”
Fourth CEAS Air and Space Conference
, Linköping, Sweden, Sept. 16–19, Paper No. CAES 257.
36.
Kaiser
,
S.
,
Grenon
,
R.
,
Bijewitz
,
J.
,
Prendinger
,
A.
,
Atinault
,
O.
,
Isikveren
,
A. T.
, and
Hornung
,
M.
,
2014
, “
Quasi-Analytical Aerodynamic Methods for Propulsive Fuselage Concepts
,”
29th Congress of the International Council of the Aeronautical Sciences
, St. Petersburg, Russia, Sept. 7–12, Paper No. ICAS 2014_0518.https://www.researchgate.net/publication/272748806_Quasi-Analytical_Aerodynamic_Methods_for_Propulsive_Fuselage_Concepts
37.
Bijewitz
,
J.
,
Seitz
,
A.
,
Isikveren
,
A. T.
, and
Hornung
,
M.
,
2016
, “
Multi-Disciplinary Design Investigation of Propulsive FFuselage Aircraft Concepts
,”
Aircr. Eng. Aerosp. Technol.
,
88
(
2
), pp.
257
267
.10.1108/AEAT-02-2015-0053
38.
Bijewitz
,
J.
,
Seitz
,
A.
,
Hornung
,
M.
, and
Isikveren
,
A. T.
,
2017
, “
Progress in Optimizing the Propulsive Fuselage Aircraft Concept
,”
J. Aircr.
,
54
(
5
), pp.
1979
1989
.10.2514/1.C034002
39.
Bijewitz
,
J.
,
Seitz
,
A.
, and
Hornung
,
M.
,
2018
, “
Power Plant Pre-Design Exploration for a Turbo-Electric Propulsive Fuselage Concept
,”
AIAA
Paper No. 2018-4402.10.2514/6.2018-4402
40.
Pardo
,
A. C.
,
2018
, “
D3.04 Specification of Fan Design and Rig Test Campaign
,” CENTRELINE Deliverable.
41.
Pardo
,
A. C.
, and
Hall
,
C. A.
,
2009
, “
Aerodynamics of Boundary Layer Ingesting Fuselage Fans
,” International Society for Air Breathing Engines, Camberra, Australia, Sept. 22–27, Paper No.
ISABE 2019–24162
.https://www.repository.cam.ac.uk/handle/1810/298982
42.
Kenway
,
G. K. W.
, and
Kiris
,
C. C.
,
2018
, “
Aerodynamic Shape Optimization of the STARC-ABL Concept for Minimal Inlet Distortion
,”
AIAA
Paper No. 2018-1912.10.2514/2018-1912
43.
Ordaz
,
I.
,
Rallabhandi
,
S. K.
,
Nielsen
,
E. J.
, and
Diskin
,
B.
,
2018
, “
Mitigation of Engine Inlet Distortion Through Adjoint-Based Design
,”
AIAA
Paper No. 2017-3410. 10.2514/2017-3410
44.
Ordaz
,
I.
,
2018
, “
Aero-Propulsion Analysis and Design Framework
,”
Propulsion-Airframe Integration Technical Interchange Meeting
, Cleveland, Ohio, Report No.
NASA CP-2018-219955
, pp.
113
154
.https://ntrs.nasa.gov/citations/20180008752
45.
Gray
,
J. S.
,
Mader
,
C. A.
,
Kenway
,
G. K. W.
, and
Martins
,
J. R. R. A.
,
2018
, “
Modeling Boundary Layer Ingestion Using a Coupled Aeropropulsive Analysis
,”
J. Aircr.
,
55
(
3
), pp.
1191
1199
.10.2514/1.C034601
46.
Atinault
,
O.
,
Carrier
,
G.
,
Grenon
,
R.
,
Verbecke
,
C.
, and
Viscat
,
P.
,
2013
, “
Numerical and Experimental Aerodynamic Investigations of Boundary Layer Ingestion for Improving Propulsion Efficiency for Future Air Transport
,”
AIAA
Paper No. 2013-2406. 10.2514/6.2013-2406
47.
Blumenthal
,
B. T.
,
Elmiligui
,
A.
,
Geiselhart
,
K. A.
, and
Campbell
,
R. L.
,
2016
, “
Computational Investigation of a Boundary-Layer Ingesting Propulsion System for the Common Research Model
,”
AIAA
Paper No. 2016-3812.10.2514/2016-3812
48.
Blumenthal
,
B. T.
,
Elmiligui
,
A.
,
Geiselhart
,
K. A.
,
Campbell
,
R. L.
,
Maughmer
,
M. D.
, and
Schmitz
,
S.
,
2018
, “
Computational Investigation of a Boundary-Layer-Ingestion Propulsion System
,”
J. Aircr.
,
55
(
3
), pp.
1141
1153
.10.2514/1.C034454
49.
Lee
,
B. J.
,
Liou
,
M. F.
, and
Liou
,
M. S.
,
2018
, “
Conceptual Aerodynamic Design of a Tail-Cone Thruster System Under Axi-Symmetric Inlet Distortion
,”
ASME
Paper No. GT2018-77089.10.1115/GT2018-77089
50.
Fernández
,
A. M.
, and
Smith
,
H.
,
2020
, “
Effects of a Fuselage Boundary Layer Ingesting Propulsor on Airframe Forces and Moments
,”
Aerosp. Sci. Technol.
,
100
, p.
105808
.10.1016/j.ast.2020.105808
51.
Mirzoyan
,
A.
, and
Isikveren
,
A. T.
,
2015
, “
DisPURSAL D1.2—Report on the Technology Roadmap for 2035
,”
Technical Report
.https://www.researchgate.net/publication/274702533_DisPURSAL_D12_-_Report_on_the_Technology_Roadmap_for_2035
52.
Mirzoyan
,
A.
,
Isyanov
,
A.
, and
Isikveren
,
A.
,
2016
, “
Comparative Efficiency Analysis of Distributed Propulsion Systems for Propulsive Fuselage and Hybrid Wing Body Concepts in FP7 Project” DisPURSAL
,”
30th Congress of the International Council of the Aeronautical Sciences
, Daejon, South Korea, Sept. 25–30, Paper No. ICAS 2016_0602.
53.
Gur
,
O.
,
Mason
,
W.
, and
Schetz
,
J.
,
2009
, “
Full Configuration Drag Estimation
,”
AIAA
Paper No. 2009-4109.10.2514/2009-4109
54.
Goraj
,
Z.
,
Goliszek
,
B.
,
Kowalski
,
M.
,
Seitz
,
A.
,
Peter
,
F.
, and
Meller
,
F.
,
2018
, “
Strategy and Implementation of a Parametric CAD Model for R2035 Aircraft Structure and External Configuration
,”
31st Congress of the International Council of the Aeronautical Sciences
, Belo Horizonte, Brazil, Sept. 9–14, Paper No. ICAS 2018_0762.https://www.semanticscholar.org/paper/STRATEGY-AND-IMPLEMENTATION-OF-A-PARAMETRIC-CAD-FOR-Goraj-Goliszek/027f5776aa72a7dbbd89ee4f666c04a4dd3cd523
55.
Bradley
,
M. K.
, and
Droney
,
C. K.
,
2012
, “
Subsonic Ultra Green Aircraft Research Phase II: N+4 Advanced Concept Development
,” NASA Langley Research Center, Hampton, VA, Report No.
NASA CR-2012-217556
.https://www.semanticscholar.org/paper/Subsonic-Ultra-Green-Aircraft-Research-Phase-II%3A-Bradley-Droney/d4abd565cfe1dbbd4648bdd52e9a3a594be9e08b
56.
Feagin
,
R. C.
, and
Morrison
,
W. D.
,
1978
, “
Delta Method, an Empirical Drag Buildup Technique
,” NASA Ames Research Center, Mountain View, CA, Report No.
NASA CR-151971
.https://www.esdu.com/cgi-bin/ps.pl?sess=unlicensed_1200902183429gfv&t=doc&p=nasa_cr151971
57.
Sadey
,
D. J.
,
Csank
,
J. T.
,
Hanlon
,
P. A.
, and
Jansen
,
R. H.
,
2018
, “
A Generalized Power System Architecture Sizing and Analysis Framework
,”
AIAA
Paper No. 2018-4616.10.2514/2018-4616
58.
Yoon
,
A.
,
Arastu
,
F.
,
Lohan
,
D.
,
Xiao
,
J.
, and
Haran
,
K.
,
2019
, “
Direct-Drive Electric Motor for STARC-ABL Tail-Cone Propulsor
,”
AIAA Paper No. 2019-4516.
10.2514/2019-4516
59.
Kratz
,
J. L.
, and
Thomas
,
G. L.
,
2019
, “
Dynamic Analysis of the STARC-ABL Propulsion System
,” NASA Glenn Research Center, Cleveland, OH, Report No.
NASA TM-2019-220352
.https://ntrs.nasa.gov/citations/20190032489
60.
Kim
,
H.
, and
Liou
,
M. S.
,
2017
, “
Flow Simulation of N3-X Hybrid Wing-Body Configuration
,”
Aerosp. Sci. Technol.
,
71
(
1
), pp.
661
674
.10.1016/j.ast.2017.09.046
61.
Uranga
,
A.
,
Drela
,
M.
,
Hall
,
D. K.
, and
Greitzer
,
M.
,
2018
, “
Analysis of Aerodynamic Benefit From Boundary Layer Ingestion for Transport Aircraft
,”
AIAA J.
,
56
(
11
), pp.
4271
4281
.10.2514/1.J056781
62.
Yutko
,
B.
,
Titchener
,
N.
,
Chambers
,
J. T.
,
Courtin
,
C.
,
Lieu
,
M.
,
Roberts
,
T.
,
Tylko
,
J.
, and
Wirsing
,
L.
,
2017
, “
Conceptual Design of a D8 Commercial Aircraft
,”
AIAA
Paper No. 2017-3590.10.2514/2017-3590
63.
Wiart
,
L.
,
Atinault
,
O.
,
Paluch
,
B.
,
Hue
,
D.
, and
Grenon
,
R.
,
2015
, “
Development of NOVA Aircraft Configurations for Large Engine Integration Studies
,”
AIAA
Paper No. 2015-2254.10.2514/2015-2254
64.
Wiart
,
L.
,
Atinault
,
O.
,
Boniface
,
J. C.
, and
Barrier
,
R.
,
2016
, “
Aeropropulsive Performance Analysis of the NOVA Configurations
,”
30th Congress of the International Council of the Aeronautical Sciences
, Daejeon, Korea, Sept. 25–30, Paper No. ICAS 2016–0092.https://www.researchgate.net/publication/308786684_Aeropropulsive_Performance_Analysis_of_the_NOVA_Configurations
65.
Drela
,
M.
,
2011
, “
Development of the D8 Transport Configuration
,”
AIAA
Paper No. 2011-3970.10.2514/AIAA-2011-3970
66.
Pandya
,
S. A.
,
2012
, “
External Aerodynamics Simulations for the MIT D8 ‘Double-Bubble’ Aircraft Design
,” Seventh International Conference on Computational Fluid Dynamics (
ICCFD7
), Big Island, Hawaii, July 9–13, Paper No. ICCFD7-4304.https://www.nas.nasa.gov/assets/pdf/papers/ICCFD7-4304_paper.pdf
67.
Pandya
,
S. A.
,
Huang
,
A.
,
Espitia
,
A.
, and
Uranga
,
A.
,
2014
, “
Computational Assessment of the Boundary Layer Ingesting Nacelle Design of the D8 Aircraft
,”
AIAA
Paper No. 2014–0907.10.2514/6.2014-0907
68.
Uranga
,
A.
,
Drela
,
M.
,
Greitzer
,
E. M.
,
Titchener
,
N. A.
,
Lieu
,
M. K.
,
Siu
,
N. M.
, and
Huang
,
A. C.
,
2014
, “
Preliminary Experimental Assessment of the Boundary Layer Ingestion Benefit for the D8 Aircraft
,”
AIAA
Paper No. 2014–0906.10.2514/6.2014-0906
69.
Uranga
,
A.
,
Drela
,
M.
,
Greitzer
,
E. M.
,
Hall
,
D. K.
,
Titchener
,
N. A.
,
Lieu
,
M. K.
,
Siu
,
N. M.
,
Casses
,
C.
,
Huang
,
A. C.
,
Gatlin
,
G. M.
, and
Hannon
,
J. A.
,
2017
, “
Boundary Layer Ingestion Benefit of the D8 Transport Aircraft
,”
AIAA J.
,
55
(
11
), pp.
3693
3708
.10.2514/1.J055755
70.
Vicroy
,
D. D.
,
2017
, “
Low-Speed Stability and Control Test of a” Double-Bubble” Transport Configuration
,” NASA Langley Research Center, Hampton, VA, Report No.
NASA CR-2017-219797
.
71.
Marien
,
T. V.
,
Welstead
,
J. R.
, and
Jones
,
S. M.
,
2018
, “
Vehicle-Level System Impact of Boundary Layer Ingestion for the NASA D8 Concept Aircraft
,”
AIAA
Paper No. 2018-0271.10.2514/2018-0271
72.
Clark
,
I. A.
,
Thomas
,
R. H.
, and
Guo
,
Y.
,
2018
, “
Aircraft System Noise Assessment of the NASA D8 Subsonic Transport Concept
,”
AIAA
Paper No. 2018-3124.10.2514/2018-3124
73.
Clark
,
I. A.
,
Thomas
,
R. H.
, and
Guo
,
Y.
,
2019
, “
Far Term Noise Reduction Roadmap for the NASA D8 and Single-Aisle Tube-and-Wing Aircraft Concepts
,”
AIAA
Paper No. 2019-2427.10.2514/2019-2427
74.
Mincu
,
D. C.
,
Garrec
,
T. L.
,
Péron
,
S.
, and
Terracol
,
M.
,
2017
, “
Immersed Boundary Conditions for High Order CAA solvers - Aeroacoustics Installation Effects Assessment
,”
AIAA
Paper No. 2017-3504.10.2514/2017-3504
75.
Lorteau
,
M.
,
Wiart
,
L.
,
Kopiev
,
V.
, and
Denisov
,
S.
,
2019
, “
Numerical Study, With Experimental Validation, of Fan Noise Installation Effects in Over-Wing Nacelle Configuration Using the Immersed Boundary Method
,”
AIAA
Paper No. 2019-2519.10.2514/2019-2519
76.
Romani
,
G.
,
Ye
,
Q.
,
Avallone
,
F.
,
Ragni
,
D.
, and
Casalino
,
D.
,
2019
, “
Fan Noise Boundary Layer Ingestion Installation Effects for NOVA Aircraft Configuration
,”
AIAA
Paper No. 2019–2429.10.2514/2019-2429
77.
Romani
,
G.
,
Ye
,
Q.
,
Avallone
,
F.
,
Ragni
,
D.
, and
Casalino
,
D.
,
2020
, “
Numerical Analysis of Fan Noise for NOVA Boundary Layer Ingestion Configuration
,”
Aerosp. Sci. Technol.
,
96
(
1
), p.
105532
.10.1016/j.ast.2019.105532
78.
Wiart
,
L.
, and
Negulescu
,
C.
,
2018
, “
Exploration of the Airbus ‘Nautilus’ Engine Integration Concept
,”
31st Congress of the International Council of the Aeronautical Sciences
, Belo Horizonte, Brazil, Sept. 7–14, Paper No. ICAS 2018–0135.https://www.researchgate.net/publication/327746097_Exploration_of_the_Airbus_Nautilius_Engine_Integration_Concept
79.
Diouf
,
M. M. L.
,
Lengley-Kampmann
,
T.
, and
Schnell
,
R.
,
2018
, “
Interaction of an Aircraft Fuselage Boundary Layer With a Contra-Rotating Turbofan
,”
Deutscher Luft Und Raumfahrt Kongress DLRK
, Friedrichshafen, Germany, Sept. 4–6, Paper No. 480125.http://www.dglr.de/publikationen/2018/480125.pdf
80.
Eichner
,
F.
,
Belz
,
J.
,
Winkelmann
,
P.
,
Schnell
,
R.
, and
Lengyel-Kampmann
,
T.
,
2019
, “
Prediction of Aerodynamically Induced Fan Blade Vibration Due to Boundary Layer Ingestion
,”
13th European Conference on Turbomachinery Fluid Dynamics and Thermodynamics ETC13
, Lausanne, Switzerland, Apr. 8–12, Paper No. ETC2019-370.https://www.euroturbo.eu/publications/proceedings-papers/etc2019-370/
81.
Valencia
,
E.
,
Hidalgo
,
V.
,
Nalianda
,
D.
,
Laskaridis
,
P.
, and
Singh
,
R.
,
2017
, “
Discretized Miller Approach to Assess Effects on Boundary Layer Ingestion Induced Distortion
,”
Chin. J. Aeronautics
,
30
(
1
), pp.
235
248
.10.1016/j.cja.2016.12.005
82.
Arntz
,
A.
, and
Atinault
,
O.
,
2015
, “
Exergy-Based Performance Assessment of a Blended Wing-Body With Boundary Layer Ingestion
,”
AIAA J.
,
53
(
12
), pp.
3766
3776
.10.2514/1.J054072
83.
Felder
,
J. L.
,
Brown
,
G. V.
,
Kim
,
H. D.
, and
Chu
,
J.
,
2011
, “
Turboelectric Distributed Propulsion in a Hybrid Wing Body Aircraft
,”
20th International Society for Airbreathing Engines
, Gothenburg, Sweden, Sept. 12–16, Paper No. ISABE
2011
1340
.
84.
Laskaridis
,
P.
,
Valencia
,
E.
,
Kirner
,
R.
, and
Wei
,
T. J.
,
2015
, “
Assessment of Distributed Propulsion Systems Used With Different Aircraft Configurations
,”
AIAA
Paper No. 2015-4029.10.2514/2015-4029
85.
Goldberg
,
C.
,
Nalianda
,
D.
,
Laskaridis
,
P.
, and
Pilidis
,
P.
,
2017
, “
Performance Assessment of a Boundary Layer Ingesting Distributed Propulsion System at Off-Design
,”
AIAA
Paper No.
2017
5055
.10.2514/6.2017-5055
86.
Schmollgruber
,
P.
,
Döll
,
C.
,
Hermetz
,
J.
,
Liaboeuf
,
R.
,
Ridel
,
M.
,
Cafarelli
,
I.
,
Atinault
,
O.
,
François
,
C.
, and
Paluch
,
B.
,
2019
, “
Multidisciplinary Exploration of DRAGON: An ONERA Hybrid Electric Distributed Propulsion Concept
,”
AIAA
Paper No. 2019-1585
.10.2514/2019-1585
87.
Rodriguez
,
D. L.
,
2009
, “
Multidisciplinary Optimization Method for Designing Boundary-Layer-Ingesting Inlets
,”
J. Aircr.
,
46
(
3
), pp.
883
894
.10.2514/1.38755
88.
Godard
,
L. J.
,
2010
, “
Semi-Buried Engine Installation: The Nacre Project Experience
,”
27th International Congress of the Aeronautical Sciences
, Nice, France, Sept. 19–24, Paper No. ICAS 2010-4.4.3.https://docplayer.net/48465022-Semi-buried-engine-installation-the-nacre-project-experience.html
89.
Hardin
,
L. W.
,
Tillman
,
G.
,
Sharma
,
O. P.
,
Berton
,
J.
, and
Arend
,
D. J.
,
2012
, “
Aircraft System Study of Boundary Layer Ingesting Propulsion
,”
AIAA
Paper No. 2012-3993.10.2514/2012-3993
90.
Florea
,
R. V.
,
Matalanis
,
C.
,
Hardin
,
L. W.
,
Stucky
,
M.
, and
Shabbir
,
A.
,
2012
, “
Parametric Analysis and Design for Embedded Engine Inlets
,”
AIAA
Paper No.
2012
3994
.10.2514/6.2012-3994
91.
Florea
,
R. V.
,
Voytovych
,
D.
,
Tillman
,
G.
,
Stucky
,
M.
,
Shabbir
,
A.
, and
Sharma
,
O.
,
2013
, “
Aerodynamic Analysis of a Boundary-Layer-Ingesting Distortion-Tolerant Fan
,”
ASME
Paper No. GT2013-94656.10.1115/GT2013-94656
92.
Bakhle
,
M. A.
,
Reddy
,
T. S. R.
,
Herrick
,
G. P.
,
Shabbir
,
A.
, and
Florea
,
R. V.
,
2012
, “
Aeromechanics Analysis of a Boundary Layer Ingesting Fan
,”
AIAA
Paper No.
2012
3995
.10.2514/6.2012-3995
93.
Liu
,
C.
,
Ihiabe
,
D.
,
Laskaridis
,
P.
, and
Singh
,
R.
,
2014
, “
A Preliminary Method to Estimate Impacts of Inlet Flow Distortion on Boundary Layer Ingesting Propulsion System Design Point Performance, Institution of Mechanical Engineers—Part G
,”
J. Aerosp. Eng.
,
228
(
9
), pp.
1528
1539
.10.1177/0954410013496750
94.
Gunn
,
E. J.
, and
Hall
,
C. A.
,
2014
, “
Aerodynamics of Boundary Layer Ingesting Fans
,”
ASME
Paper No. GT2014-26142
. 10.1115/GT2014-26142
95.
Korsia
,
J. J.
,
2009
, “
VITAL - European R&D Programme for Greener Aero-Engines
,”
International Symposium on Air Breathing Engines
, Montreal, Canada, Sept. 7–11, Paper No. ISABE
2009
1114
.http://icas.org/ICAS_ARCHIVE/ICAS2006/PAPERS/612.PDF
96.
Gunn
,
E. J.
, and
Hall
,
C. A.
,
2017
, “
Non-Axisymmetric Stator Design for Boundary Layer Ingesting Fans
,”
ASME
Paper No. GT2017-63082.10.1115/GT2017-63082
97.
Hall
,
D. K.
,
Greitzer
,
E. M.
, and
Tan
,
C. S.
, March
2017
, “
Analysis of Fan Stage Conceptual Design Attributes for Boundary Layer Ingestion
,”
ASME J. Turbomach.
,
139
(
7
).10.1115/1.4035631
98.
Cousins
,
W. T.
,
Voytovych
,
D.
,
Tillman
,
G.
, and
Gray
,
E.
,
2017
, “
Desing of a Distortion-Tolerant Fan for a Boundary-Layer Ingesting Embedded Engine Application
,”
AIAA
Paper No. 2017-4700.10.2514/2017-4700
99.
Arend
,
D. J.
,
Wolter
,
J. D.
,
Hirt
,
S. M.
,
Provenza
,
A. J.
,
Gazzinga
,
J. A.
,
Cousins
,
W. T.
,
Hardin
,
L. W.
, and
Sharma
,
O. P.
,
2017
, “
Experimental Evaluation of an Embedded Boundary Layer Ingesting Propulsor for Higly Efficient Subsonic Cruise Aircraft
,”
AIAA
Paper No.
2017
5041
.10.2514/6.2017-5041
100.
Kawai
,
R. T.
,
Friedman
,
D. M.
, and
Serrano
,
L.
,
2006
, “
Blended Wing Body (BWB) Boundary Layer Ingestion (BLI) Inlet Configuration and System Studies
,” NASA Langley Research Center, Hampton, VA, Report No.
NASA CR-2006-214534
.https://core.ac.uk/download/pdf/10535756.pdf
101.
Bakhle
,
M. A.
,
Reddy
,
T. S. R.
,
Coroneros
,
R. M.
,
Min
,
J. B.
,
Provenza
,
A. J.
,
Duffy
,
K. P.
,
Stefko
,
G. L.
, and
Heinlein
,
G. S.
,
2018
, “
Aeromechanics Analysis of a Distortion-Tolerant Fan With Boundary Layer Ingestion
,”
AIAA
Paper No. 2020-1891.10.2514/2020-1891
102.
Heinlein
,
G. S.
,
Bakhle
,
M. A.
, and
Chen
,
J. P.
,
2019
, “
Aeromechanic Response of a Coupled Inlet-Fan Boundary Layer Ingesting Distortion-Tolerant Fan
,”
ASME
Paper No. GT2019-91866.10.1115/GT2019-91866
103.
Mennicken
,
M.
,
Schoenweitz
,
D.
,
Schnoes
,
M.
, and
Schnell
,
R.
,
2019
, “
Conceptual Fan Design for Boundary Layer Ingestion
,”
ASME
Paper No. GT2019-90257.10.1115/GT2019-90257
104.
Kim
,
H.
, and
Liou
,
M. S.
,
2013
, “
Flow Simulation of N3-X Hybrid Wing-Body Configuration
,”
AIAA
Paper No. 2013-0221
. 10.2514/6.2013-0221
105.
Gao
,
Z.
, and
Smith
,
H.
,
2020
, “
Blended Wing Body With Boundary Layer Ingestion Conceptual Design in a Multidisciplinary Design Analysis Optimization Environment
,”
AIAA
Paper No. 2020-1955. 10.2514/AIAA-2020-1955
You do not currently have access to this content.