Abstract

Labyrinth seals are widely applied in the turbomachinery to control the leakage flow through the clearance between stationary and rotating components. The fluid excitation induced by the labyrinth seal would deteriorate the stability of turbomachinery shaft. Developing an accurate and rapid prediction approach is crucial to the analysis of the fluid excitation rotordynamics of labyrinth seals. The objective of this study is to analyze the applicability of leakage models using Bulk-Flow method and investigate the factors affecting the rotordynamic characteristics of the labyrinth seal. An elliptical orbit for rotor whirling was assumed in the one-control-volume Bulk-Flow model considering an isentropic process to predict the frequency-dependent rotordynamic coefficients of the labyrinth seal. The optimal leakage model was determined by comprehensively analyzing the applicability of seventy-two leakage models. Employing the optimal leakage model in the Bulk-Flow method, the effects of sealing clearance, pressure ratio, preswirl ratio and rotational speed on the rotordynamic characteristics of the labyrinth seal were investigated. The conclusions show that the Bulk-Flow method has an average prediction error of around 10% for the leakage flow rate, cross-coupled stiffness and direct damping when equipped with the optimal leakage model. Increasing preswirl ratio has a significantly destabilizing effect on the rotor stability, while the influence of increasing rotational speed is strongly related to preswirl direction. The effective damping of the labyrinth seal is sensitive to the inlet pressure, but insensitive to the outlet pressure and sealing clearance. The crossover frequency is almost impervious to the inlet pressure, outlet pressure and sealing clearance.

References

1.
Chupp
,
R. E.
,
Hendricks
,
R. C.
,
Lattime
,
S. B.
, and
Steinetz
,
B. M.
,
2006
, “
Sealing in Turbomachinery
,”
J. Propul. Power
,
22
(
2
), pp.
313
349
.10.2514/1.17778
2.
Li
,
J.
,
De Choudhury
,
P.
, and
Kushner
,
F.
,
2003
, “
Evaluation of Centrifugal Compressor Stability Margin and Investigation of Antiswirl Mechanism
,”
Proceedings of the 32nd Turbomachinery Symposium
, Turbomachinery Laboratories, Texas A&M University, Houston, TX, Sept. 8–11, pp. 49–57.10.21423/R12D35
3.
Childs
,
D. W.
,
1993
,
Turbomachinery Rotordynamics: Phenomena, Modeling, and Analysis
,
Wiley
,
New York
.
4.
Childs
,
D. W.
, and
Vance
,
J. M.
,
1997
, “
Annular Gas Seals and Rotordynamics of Compressors and Turbines
,”
Proceedings of the 26th Turbomachinery Symposium
, Turbomachinery Laboratories, Texas A&M University, Houston, TX, Sept. 14–18, pp. 201–220.
10.21423/R1HT06
5.
Moore
,
J. J.
,
2003
, “
Three-Dimensional CFD Rotordynamic Analysis of Gas Labyrinth Seals
,”
ASME J. Vib. Acoust.
,
125
(
4
), pp.
427
433
.10.1115/1.1615248
6.
Li
,
Z.
,
Li
,
J.
, and
Yan
,
X.
,
2013
, “
Multiple Frequencies Elliptical Whirling Orbit Model and Transient RANS Solution Approach to Rotordynamic Coefficients of Annual Gas Seals Prediction
,”
ASME J. Vib. Acoust.
,
135
(
3
), p.
031005
.10.1115/1.4023143
7.
Yan
,
X.
,
He
,
K.
,
Li
,
J.
, and
Feng
,
Z.
,
2015
, “
A Generalized Prediction Method for Rotordynamic Coefficients of Annular Gas Seals
,”
ASME J. Eng. Gas Turbines Power
,
137
(
9
), p.
092506
.10.1115/1.4029883
8.
Iwatsubo
,
T.
,
1980
, “
Evaluation of Instability Forces of Labyrinth Seals in Turbines or Compressors
,”
Proceedings of Rotordynamic Instability Problems in High Performance Turbomachinery
, Texas A&M University, Houston, TX, NASA Conference Publication No. 2133, pp. 139–167.
https://www.semanticscholar.org/paper/Evaluation-of-instability-forces-of-labyrinth-seals-Iwatsubo/9ee26b16e1f13a9006cda5fdad80657830e08ebf
9.
Childs
,
D. W.
, and
Scharrer
,
J. K.
,
1986
, “
An Iwatsubo-Based Solution for Labyrinth Seals: Comparison to Experimental Results
,”
ASME J. Eng. Gas Turbines Power
,
108
(
2
), pp.
325
331
.10.1115/1.3239907
10.
Scharrer
,
J. K.
,
1988
, “
Theory Versus Experiment for the Rotordynamic Coefficients of Labyrinth Gas Seals: Part I—A Two Control Volume Model
,”
ASME J. Vib. Acoust.
,
110
(
3
), pp.
270
280
.10.1115/1.3269513
11.
Ertas
,
B. H.
,
Delgado
,
A.
, and
Vannini
,
G.
,
2012
, “
Rotordynamic Force Coefficients for Three Types of Annular Gas Seals With Inlet Preswirl and High Differential Pressure Ratio
,”
ASME J. Eng. Gas Turbines Power
,
134
(
4
), p.
042503
.10.1115/1.4004537
12.
Vannini
,
G.
,
Cioncolini
,
S.
,
Del Vescovo
,
G.
, and
Rovini
,
M.
,
2014
, “
Labyrinth Seal and Pocket Damper Seal High Pressure Rotordynamic Test Data
,”
ASME J. Eng. Gas Turbines Power
,
136
(
2
), p.
022501
.10.1115/1.4025360
13.
Thorat
,
M. R.
, and
Childs
,
D. W.
,
2010
, “
Predicted Rotordynamic Behavior of a Labyrinth Seal as Rotor Surface Speed Approaches Mach 1
,”
ASME J. Eng. Gas Turbines Power
,
132
(
11
), p.
112504
.10.1115/1.4000895
14.
Cangioli
,
F.
,
Pennacchi
,
P.
,
Vannini
,
G.
,
Ciuchicchi
,
L.
,
Vania
,
A.
,
Chatterton
,
S.
, and
Dang
,
P. V.
,
2018
, “
On the Thermodynamic Process in the Bulk-Flow Model for the Estimation of the Dynamic Coefficients of Labyrinth Seals
,”
ASME J. Eng. Gas Turbines Power
,
140
(
3
), p.
032502
.10.1115/1.4037919
15.
Gamal Eldin
,
A. M.
,
2007
, “
Leakage and Rotordynamic Effects of Pocket Damper Seals and See-Through Labyrinth Seals
,” Ph.D. thesis,
Texas A&M University
,
College Station, TX
.
16.
Fang
,
X.
,
Xu
,
Y.
, and
Zhou
,
Z.
,
2011
, “
New Correlations of Single-Phase Friction Factor for Turbulent Pipe Flow and Evaluation of Existing Single-Phase Friction Factor Correlations
,”
Nucl. Eng. Des.
,
241
(
3
), pp.
897
902
.10.1016/j.nucengdes.2010.12.019
17.
Vannini
,
G.
,
Cioncolini
,
S.
,
Calicchio
,
V.
, and
Tedone
,
F.
,
2011
, “
Development of a High Pressure Rotordynamic Test Rig for Centrifugal Compressors Internal Seals Characterization
,”
Proceedings of the 40th Turbomachinery Symposium
, Turbomachinery Laboratories, Texas A&M University, Houston, TX, Sept. 12–15, pp. 46–59.10.21423/R16H09
18.
Vance
,
J.
,
Zeidan
,
F.
, and
Murphy
,
B.
,
2010
,
Machinery Vibration and Rotordynamics
,
Wiley
,
Hoboken, NJ
.
19.
Kiijarvi
,
J.
,
2011
, “
Darcy Friction Factor Formulae in Turbulent Pipe Flow
,” Lunowa Fluid Mechanics Paper 110727, pp. 1–11.
http://www.kolumbus.fi/jukka.kiijarvi/clunowa/fluid_mechanics/pdf_articles/darcy_friction_factor.pdf
20.
Picardo
,
A.
, and
Childs
,
D. W.
,
2005
, “
Rotordynamic Coefficients for a Tooth-on-Stator Labyrinth Seal at 70 Bar Supply Pressures: Measurements Versus Theory and Comparisons to a Hole-Pattern Stator Seal
,”
ASME J. Eng. Gas Turbines Power
,
127
(
4
), pp.
843
855
.10.1115/1.1924634
21.
Mehta
,
N. J.
, and
Childs
,
D. W.
,
2014
, “
Measured Comparison of Leakage and Rotordynamic Characteristics for a Slanted-Tooth and a Straight-Tooth Labyrinth Seal
,”
ASME J. Eng. Gas Turbines Power
,
136
(
1
), p.
012501
.10.1115/1.4025267
22.
Li
,
Z.
,
Li
,
J.
, and
Feng
,
Z.
,
2016
, “
Numerical Comparison of Rotordynamic Characteristics for a Fully Partitioned Pocket Damper Seal and a Labyrinth Seal With High Positive and Negative Inlet Preswirl
,”
ASME J. Eng. Gas Turbines Power
,
138
(
4
), p.
042505
.10.1115/1.4031545
23.
Baumann
,
U.
,
1999
, “
Rotordynamic Stability Tests on High-Pressure Radial Compressors
,”
Proceedings of the 28th Turbomachinery Symposium
, Turbomachinery Laboratories, Texas A&M University, Houston, TX, Sept. 14–16, pp. 115–122.10.21423/R1T D30
24.
Childs
,
D. W.
,
Mclean
,
J. E.
,
Zhang
,
M.
, and
Arthur
,
S. P.
,
2016
, “
Rotordynamic Performance of a Negative-Swirl Brake for a Tooth-on-Stator Labyrinth Seal
,”
ASME J. Eng. Gas Turbines Power
,
138
(
6
), p.
062505
.10.1115/1.4031877
You do not currently have access to this content.