Abstract

Conventional airfoil blend repair limits are established using nominal, design intent geometry. This convention does not explicitly consider the inherent blade-to-blade structural response variation associated with geometric manufacturing deviations. In this work, we explore whether accounting for these variations leads to significant differences in blend depths and develop a novel approach to effectively predict blade-specific blend allowable. These blade-specific values maximize the part repairability according to their proximity to defined structural integrity constraints. The methodology is demonstrated on the as-manufactured geometry of an aerodynamic research rig compressor rotor. Geometric point cloud data of this rotor is used to construct as-built finite element models (FEMs) of each airfoil. The effect of two large blends on these airfoils demonstrates the opportunity of blade-specific blend limits. A new approach to determine each airfoil's blend repair capacity is developed that uses sequential least-squares quadratic programing and a parametric blended blade FEM that accounts for manufacturing geometry variations and variable blend geometry. A mesh morphing algorithm modifies a nominal geometry model to match the as-built airfoil surface and blend geometry. The numerical optimization maximizes blend depth values within the frequency, mode shape, and high cycle fatigue constraint boundaries. It is found that there are large variations in blend depth allowable between blades and competing structural integrity criteria are responsible for their limits. It is also found that, despite complex modal behavior caused by eigenvalue veering, the proposed optimization approach converges. The developed methodologies may be used in the future to extend blend limits, enable continued operations, and reduce sustainment costs.

References

1.
Garzon
,
V. E.
, and
Darmofal
,
D. L.
,
2003
, “
Impact of Geometric Variability on Axial Compressor Performance
,”
ASME J. Turbomach.
,
125
(
4
), pp.
692
703
.10.1115/1.1622715
2.
Heinze
,
K.
,
Friedl
,
W.-H.
,
Vogeler
,
K.
, and
Voigt
,
M.
,
2009
, “
Probabilistic Hcf Investigation of Compressor Blades
,”
ASME
Paper No. GT2009-59899.10.1115/GT2009-59899
3.
Lange
,
A.
,
Voigt
,
M.
,
Vogeler
,
K.
,
Schrapp
,
H.
,
Johann
,
E.
, and
Gummer
,
V.
,
2012
, “
Impact of Manufacturing Variability and Nonaxisymmetry on High-Pressure Compressor Stage Performance
,”
ASME J. Eng. Gas Turbines Power
,
134
(
3
), p. 032504.10.1115/1.4004404
4.
Kaszynski
,
A. A.
,
Beck
,
J. A.
, and
Brown
,
J. M.
,
2013
, “
Uncertainties of an Automated Optical 3D Geometry Measurement, Modeling, and Analysis Process for Mistuend Integrally Bladed Rotor Reverse Engineering
,”
ASME J. Eng. Gas Turbines Power
,
135
(
10
), p.
102504
.10.1115/1.4025000
5.
Kaszynski
,
A. A.
,
Beck
,
J. A.
, and
Brown
,
J. M.
,
2014
, “
Automated Finite Element Model Mesh Updating Scheme Applicable to Mistuning Analysis
,”
ASME
Paper No. GT2014-26925.10.1115/GT2014-26925
6.
Backhaus
,
T.
,
Maywald
,
T.
,
Schrape
,
S.
,
Voigt
,
M.
, and
Mailach
,
R.
,
2017
, “
A Parametrization Describing Blisk Airfoil Variations Referring to Modal Analysis
,”
ASME
Paper No. GT2017-64243.10.1115/GT2017-64243
7.
Maywald
,
T.
,
Backhaus
,
T.
,
Schrape
,
S.
, and
Kuhhorn
,
A.
,
2015
, “
Geometric Model Update of Blisks and Its Experimental Validation for a Wide Frequency Range
,”
ASME
Paper No. GT2017-63446.10.1115/GT2017-63446
8.
Gillaugh
,
D. L.
,
Kaszynski
,
A. A.
,
Brown
,
J. M.
,
Johnston
,
D. A.
, and
Slater
,
J. C.
,
2018
, “
Accurate Strain Gauge Limits Through Geometry Mistuning Modeling
,”
J. Propul. Power
,
34
(
6
), pp.
1401
1408
.10.2514/1.B36849
9.
Figaschewsky
,
F.
,
Hanschke
,
B.
, and
Kühhorn
,
A.
,
2019
, “
Efficient Generation of Engine Representative Tip Timing Data Based on a Reduced Order Model for Bladed Rotors
,”
ASME J. Eng. Gas Turbines Power
,
141
(
1
), p. 012503.10.1115/1.4040748
10.
Sinha
,
A.
,
2009
, “
Reduced-Order Model of a Bladed Rotor With Geometric Mistuning
,”
ASME J. Turbomach.
,
131
(
3
), p.
031007
.10.1115/1.2987237
11.
Beck
,
J. A.
,
Brown
,
J. M.
,
Cross
,
C. J.
, and
Slater
,
J. C.
,
2013
, “
Probabilistic Mistuning Assessment Using Nominal and Geometry Based Mistuning Methods
,”
ASME J. Turbomach.
,
135
(
5
), p.
051004
.10.1115/1.4023103
12.
Thilmany
,
J.
,
2017
, “
Digital World Spawns Identical Twins
,”
ASME Mech. Eng.
,
139
(
10
), pp.
32
37
.10.1115/1.2017-Oct-1
13.
Gregg
,
S. J.
,
2018
, “
Digitization and MRO at ASME Turbo Expo 2018
,”
ASME Mech. Eng.
,
140
(
03
), pp.
S51
S56
.10.1115/1.2018-MAR-7
14.
Wang
,
Y.
,
Hu
,
R.
, and
Zheng
,
X.
,
2017
, “
Aerodynamic Analysis of an Airfoil With Leading Edge Pitting Erosion
,”
ASME J. Sol. Energy Eng.
,
139
(
6
), p.
061002
.10.1115/1.4037380
15.
Kellersmann
,
A.
,
Weiler
,
S.
,
Bode
,
C.
,
Friedrichs
,
J.
,
Städing
,
J.
, and
Ramm
,
G.
,
2018
, “
Surface Roughness Impact on Low-Pressure Turbine Performance Due to Operational Deterioration
,”
ASME J. Eng. Gas Turbines Power
,
140
(
6
), p.
062601
.10.1115/1.4038246
16.
Beck
,
J. A.
,
Brown
,
J. M.
,
Runyon
,
B.
, and
Scott-Emuakpor
,
O. E.
,
2017
, “
Probabilistic Study of Integrally Bladed Rotor Blends Using Geometric Mistuning Models
,”
AIAA
Paper No. 2017-0860.10.2514/6.2017-0860
17.
Berger
,
R.
,
Häfele
,
J.
,
Hofmeister
,
B.
, and
Rolfes
,
R.
,
2018
, “
Blend Repair Shape Optimization for Damaged Compressor Blisks
,”
Advances in Structural and Multidisciplinary Optimization
,
01
, Springer, Cham, pp.
1631
1642
.
18.
Hanschke
,
B.
,
Klauke
,
T.
, and
Kühhorn
,
A.
,
2017
, “
The Effect of Foreign Object Damage on Compressor Blade High Cycle Fatigue Strength
,”
ASME
Paper No. GT2017-63599.10.1115/GT2017-63599
19.
Knapke
,
C. J.
,
Wolff
,
M.
, and
Johnston
,
D. A.
,
2019
, “
Blended Fan Blade Effects on Aerodynamic Forces
,”
AIAA
Paper No. 2019-1182.10.2514/6.2019-1182
20.
Madden
,
A.
,
Epureanu
,
B. I.
, and
Filippi
,
S.
,
2012
, “
Reduced-Order Modeling Approach for Blisks With Large Mass, Stiffness, and Geometric Mistuning
,”
AIAA J.
,
50
(
2
), pp.
366
374
.10.2514/1.J051140
21.
Tang
,
W.
,
Baek
,
S.
, and
Epureanu
,
B. I.
,
2016
, “
Reduced Order Models for Blisks With Small and Large Mistuning and Friction Dampers
,”
ASME
Paper No. GT2016-57850.10.1115/GT2016-57850
22.
Kurstak
,
E.
, and
D'Souza
,
K.
,
2019
, “
A Statistical Characterization of the Effects and Interactions of Small and Large Mistuning on Multistage Bladed Disks
,”
ASME J. Eng. Gas Turbines Power
, 142(4), p. 041015.10.1115/1.4045023
23.
Huls
,
M.
,
Scheidt
,
L. P.-V.
, and
Wallaschek
,
J.
,
2018
, “
Combined Airfoil and Snubber Design Optimization of Turbine Blades With Respect to Friction Damping
,”
ASME J. Turbomach.
,
140
(
8
), p.
07
.10.1115/1.4040679
24.
Choi
,
B.-K.
,
Lentz
,
J.
,
Rivas-Guerra
,
A. J.
, and
Mignolet
,
M. P.
,
2003
, “
Optimization of Intentional Mistuning Patterns for the Reduction of the Forced Response Effects of Unintentional Mistuning: Formulation and Assessment
,”
ASME J. Eng. Gas Turbines Power
,
125
(
1
), pp.
131
140
.10.1115/1.1498270
25.
Hohl
,
A.
, and
Wallaschek
,
J.
,
2016
, “
A Method to Reduce the Energy Localization in Mistuned Bladed Disks by Application-Specific Blade Pattern Arrangement
,”
ASME J. Eng. Gas Turbines Power
,
138
(
9
), p.
3
.10.1115/1.4032739
26.
Pan
,
W.
,
Zhang
,
M.
, and
Tang
,
G.
,
2020
, “
Blade Arrangement Optimization for Mistuned Bladed Disk Based on Gaussian Process Regression and Genetic Algorithm
,”
ASME J. Eng. Gas Turbines Power
,
142
(
2
), p.
11
.10.1115/1.4045553
27.
Hah
,
C.
,
Puterbaugh
,
S. L.
, and
Copenhaver
,
W. W.
,
1997
, “
Unsteady Aerodynamic Flow Phenomena in a Transonic Compressor Stage
,”
J. Propul. Power
,
13
(
3
), pp.
329
333
.10.2514/2.5175
28.
Puterbaugh
,
S. L.
,
Copenhaver
,
W. W.
,
Hah
,
C.
, and
Wennerstrom
,
A. J.
,
1997
, “
A Three-Dimensional Shock Loss Model Applied to an Aft-Swept, Transonic Compressor Rotor
,”
ASME J. Turbomach.
,
119
(
3
), pp.
452
459
.10.1115/1.2841144
29.
Brown
,
J. M.
,
Carper
,
E. B.
,
Beck
,
J. A.
, and
Kaszynski
,
A. A.
,
2019
, “
Emulation of as-Manufactured Transonic Rotor Airfoil Modal Behavior and the Significance of Frequency Veering
,”
ASME
Paper No. GT2019-91670.10.1115/GT2019-91670
30.
Bae
,
H.
,
Boyd
,
I. M.
,
Carper
,
E. B.
, and
Brown
,
J.
,
2019
, “
Accelerated Multifidelity Emulator Modeling for Probabilistic Rotor Response Study
,”
ASME J. Eng. Gas Turbines Power
,
141
(
12
), p.
11
.10.1115/1.4045019
31.
Beck
,
J.
,
Brown
,
J. M.
,
Scott-Emuakpor
,
O. E.
,
Kaszynski
,
A.
, and
Henry
,
E. B.
,
2018
, “
Modal Expansion Method for Eigensensitivity Calculations of Cyclically Symmetric Bladed Disks
,”
AIAA
Paper No. 2018-1951.10.2514/6.2018-1951
32.
Henry
,
E. B.
,
Brown
,
J. M.
, and
Beck
,
J. A.
, “
Reduced Order Geometric Mistuning Models Using Principal Component Analysis Approximations
,”
AIAA
Paper No. 2016-0706.10.2514/6.2016-0706
33.
Leissa
,
A. W.
,
1974
, “
On a Curve Veering Abberation
,”
J. Appl. Math. Phys. (ZAMP)
,
25
(
1
), pp.
99
111
.10.1007/BF01602113
You do not currently have access to this content.