Abstract

Five commercial-off-the-shelf (COTS) engines ranging from 40 to 200 cc were tested as potential power plants for Group Two RPAs. The maximum brake power ranged from 1.8 to 5.0 kW. Of the five engines, two were designed for hobby aircraft (similar in size to Group Two RPAs) while the other three were designed for powered equipment applications. These five engines were run at WOT through their respective operating speed ranges to develop energy balances, specifically quantifying the split of energy between brake power, cooling load, exhaust enthalpy, and incomplete combustion. Using the energy balance data, general correlations for BMEP and fuel conversion efficiency as functions of displaced volume were generated to compare with previous two stroke engine results. Furthermore parametric studies capturing the effects of throttle setting, combustion phasing, cylinder head temperature, and equivalence ratio on the peak BMEP and fuel conversion efficiency were performed. The study data was used to develop normalized correlations to predict peak brake power, incomplete combustion, exhaust enthalpy, and cooling load as normalized deltas from the baseline condition. These correlations can be used to help engine designers understand the effect of these parameters for four stroke engines in the size class of 40–200 cc.

References

1.
Strategic Defense Intelligence
,
2015
, “
The Global Unmanned Aerial Vehicle Market 2015-2025 - Major Programs: Market Profile
,” Business Wire, San Francisco, CA.https://www.businesswire.com/news/home/20160211005885/en/The-Global-UAV-Payload-Major-Programs-Market-2015-2025---Research-and-Markets
2.
U.S. Air Force,
2014
,
RPA Vector: Vision and Enabling Concepts 2013–2038
, United States Air Force, Washington, DC,
Report
.https://www.globalsecurity.org/military/library/policy/usaf/usaf-rpa-vector_vision-enablingconcepts_2013-2038.pdf
3.
Raviteja
,
S.
,
Ramakrishna
,
P. A.
, and
Ramesh
,
A.
,
2019
, “
Performance Enhancement of a Small Two-Stroke Engine Using Nitromethane Blends
,”
J. Propul. Power
,
35
(
3
), pp.
520
529
.10.2514/1.B37181
4.
Raviteja
,
S.
,
Ramakrishna
,
P. A.
, and
Ramesh
,
A.
,
2020
, “
Emission and Combustion Analysis of a Glow-Plug Engine Fuelled With Nitromethane–Methanol Blends
,”
SAE Int. J. Fuels Lubricants
,
13
(
3
), pp.
237
249
.10.4271/04-13-03-0015
5.
Raviteja
,
S.
,
Ramakrishna
,
P. A.
, and
Ramesh
,
A.
,
2022
, “
Performance Enhancement Using Different Nitromethane Blends in a Small Two-Stroke Engine
,”
ASME J. Energy Resour. Technol.
,
144
(
3
), p. 032303.10.1115/1.4051381
6.
Trattner
,
A.
,
Grassberger
,
H.
,
Schoegl
,
O.
,
Schmidt
,
S.
,
Kirchberger
,
R.
,
Eichlseder
,
H.
,
Kölmel
,
A.
,
Meyer
,
S.
, and
Gegg
,
T.
,
2014
, “
Advantages and Challenges of Lean Operation of Two-Stroke Engines for Hand-Held Power Tools
,”
SAE Int. J. Eng.
,
8
(
1
), pp.
101
119
.10.4271/2014-32-0009
7.
Wu
,
Y. T.
,
Chen
,
B. C.
, and
Tran
,
A. T.
,
2010
, “
Application of Semi-Direct Injection for Spark Ignition Engine
,”
Int. J. Veh. Des.
,
54
(
4
), pp.
356
370
.10.1504/IJVD.2010.036841
8.
Darzi
,
M.
,
Johnson
,
D.
,
Ulishney
,
C.
, and
Clark
,
N.
,
2018
, “
Low Pressure Direct Injection Strategies Effect on a Small SI Natural Gas Twostroke Engine's Energy Distribution and Emissions
,”
Appl. Energy
,
230
, pp.
1585
1602
.10.1016/j.apenergy.2018.09.091
9.
Garg
,
M.
,
Kumar
,
D.
,
Syed
,
M.
, and
Nageswara
,
S.
,
2016
, “
CFD Modelling of a Two Stroke Engine to Predict and Reduce Short Circuit Losses
,”
SAE Int. J. Eng.
,
9
(
1
), pp.
355
364
.http://www.jstor.org/stable/26284818
10.
Sher
,
E.
, and
Levinzon
,
D.
,
2005
, “
Scaling-Down of Miniature Internal Combustion Engines: Limitations and Challenges
,”
Heat Transfer Eng.
,
26
(
8
), pp.
1
4
.10.1080/01457630591004780
11.
Sher
,
E.
, and
Sher
,
I.
,
2011
, “
Theoretical Limits of Scaling Down Internal Combustion Engines
,”
Chem. Eng. Sci.
,
66
(
3
), pp.
260
267
.10.1016/j.ces.2010.10.005
12.
Trattner
,
A.
,
Kupelwieser
,
F.
,
Pertl
,
P.
,
Winkler
,
F.
,
Schmidt
,
S.
, and
Kirchberger
,
R.
,
2015
, “
Thermodynamic Limits of Efficiency Enhancement of Small Displacement Single-Cylinder Engines
,”
SAE
Paper No. 2015-32-0817.10.4271/2015-32-0817
13.
Pertl
,
P.
,
Trattner
,
A.
,
Stelzl
,
R.
,
Lang
,
M.
,
Schmidt
,
S.
, and
Kirchberger
,
R.
,
2015
, “
Expansion to Higher Efficiency – Experimental Investigations of the Atkinson Cycle in Small Combustion Engines
,”
SAE
Paper No. 2015-32-0809.10.4271/2015-32-0809
14.
M.
,
Darzi
,
D.
,
Johnson
,
C.
,
Ulishney
,
R.
, and
Bade
,
R.
,
2018
, “
Quantification of Energy Pathways and Gas Exchange of a Small Port Injection SI Two-Stroke Natural Gas Engine Operating on Different Exhaust Configuration
,”
SAE
Paper No. 2018-01-1278.10.4271/2018-01-1278
15.
Menon
,
S.
, and
Cadou
,
C.
,
2013
, “
Investigation of Combustion Processes in Miniature Internal Combustion Engines
,”
Combust. Sci. Technol.
,
185
(
11
), pp.
1667
1695
.10.1080/00102202.2013.829720
16.
Menon
,
S.
, and
Cadou
,
C.
,
2013
, “
Scaling of Miniature Piston-Engine Performance Part 2: Energy Losses
,”
J. Propul. Power
,
29
(
4
), pp.
788
799
.10.2514/1.B34639
17.
Menon
,
S.
, and
Cadou
,
C.
,
2013
, “
Scaling of Miniature Piston-Engine Performance Part 1: Overall Engine Performance
,”
J. Propul. Power
,
29
(
4
), pp.
774
787
.10.2514/1.B34638
18.
Heywood
,
J. B.
,
1988
,
Internal Combustion Engine Fundamentals
,
McGraw-Hill
,
New York
.
19.
Heywood
,
J. B.
, and
Sher
,
E.
,
1999
,
The Two-Stroke Cycle Engine
,
Taylor & Francis Group
,
New York
.
20.
Ausserer
,
J. K.
,
2016
, “
The Scaling of Loss Pathways and Heat Transfer in Small Scale Internal Combustion Engines
,” Ph.D. dissertation,
Department of Aeronautics and Astronautics, Air Force Institute Of Technology
, Wright-Patterson Air Force Base, OH, Report No. AFIT-ENY-DS-16-S-055.
21.
Ausserer
,
J. K.
,
Polanka
,
M. D.
,
Litke
,
P. J.
, and
Baranski
,
J. A.
,
2018
, “
Engine-Control Impact on Energy Balances for Two-Stroke Engines for 10–25 kg Remotely Piloted Aircraft
,”
ASME J. Eng. Gas Turbines Power
,
140
(
11
), pp.
112803
1
18
.10.1115/1.4039466
22.
Ausserer
,
J. K.
,
Polanka
,
M. D.
,
Baranski
,
J. A.
,
Grinstead
,
K. D.
, and
Litke
,
P. J.
,
2017
, “
Measurement of Loss Pathways in Small, Two-Stroke Internal-Combustion Engines
,”
SAE Int. J. Eng.
,
10
(
2
), pp.
128
143
.10.4271/2017-01-9276
23.
Blantin
,
J. R.
,
Polanka
,
M. D.
,
Ausserer
,
J. K.
,
Litke
,
P. J.
, and
Baranski
,
J. A.
,
2018
, “
Energy Balance and Power Loss Pathway Study of a 120 cc Four-Stroke Internal Combustion Engine
,”
ASME J. Eng. Gas Turbines Power
,
140
(
7
), p.
072803
.10.1115/1.4038881
24.
Ausserer
,
J. K.
,
2017
, “
The Scaling of Loss Pathways and Heat Transfer in Small Scale Internal Combustion Engines
,”
Aerosp. Defense Technol.
, pp.
37
38
.https://www.aerodefensetech.com/component/content/article/adt/tech-briefs/machinery-andautomation/26833
You do not currently have access to this content.