Abstract

With the rapid development of renewable energy, traditional power generation such as combined cycle unit needs to startup or change load quickly to balance the variability brought by renewable resources. In the combined cycle unit, the startup of steam turbine has a great influence on the whole set, and it is necessary to ensure safety, shorten the startup time, and reduce pollutant emissions. These optimization objectives are inter-related and have complex contradiction, which is the difficulty for multi-objective optimization. Costs function consisting of startup costs, fatigue life damage costs, pollutant emissions costs, and revenue gained from electricity is proposed to balance the contradiction more objectively. Finite exhaustive method (FEM) combining thermal-structural finite element calculation and multi-objective optimization is proposed for multi-objective startup process optimization, and its results are compared with those of minimum startup time and minimum fatigue life damage optimization. It can automatically search for a unique global optimal solution for engineering practice, rather than solution sets obtained by Pareto Optimality, which is beneficial for application in different combined cycle steam turbines and startup process. Multi-objective optimization scheduling shortens startup time from 105 to 93 min, reduces maximum stress from 493 MPa to 440 MPa, and reduces costs function by 66.6%. The comparison with the multi-objective optimization results of the response surface method (RSM) proves the reliability and validity of this method. The practical inspection results prove that the optimal scheduling is safe and effective.

References

1.
Zheng
,
L. P.
,
Chen
,
J. H.
,
Sheng
,
D. R.
, Hong, L., Gu, Z. H., and Lin, C.,
2011
, “
Study on Quick Start-Up of Steam Turbine in a Gas-Steam Combined Cycle
,”
Power Eng.
,
31
(
8
), pp.
579
584
.
2.
Topel
,
M.
,
Joecke
,
R. M.
,
Paul
,
S.
, and Laumert, B., “
Differential Expansion Sensitivity Studies During Steam Turbine Startup
,”
ASME J. Eng. Gas Turbine Power
,
138
(
6
), p.
062102
.10.1115/1.4031643
3.
Chen
,
J.
,
Jiang
,
D.
, and
Liu
,
C.
,
2015
, “
Fault Analysis and Optimal Balancing of Bowing of Steam Turbine Rotor Under Long-Term Service
,”
ASME J. Eng. Gas Turbine Power
,
137
(
11
), p.
112503
.10.1115/1.4030279
4.
Casella
,
F.
, and
Pretolani
,
F.
,
2010
, “
Fast Start-Up of a Combined-Cycle Power Plant: A Simulation Study With Modelica Fast Start-Up of a Combined-Cycle Power Plant: A Simulation Study With Modelica
,”
5th International Modelica Conference
,
Vienna, Austria
, Sept. 4–5, pp.
3
10
.https://www.researchgate.net/publication/237826713_Fast_Start-up_of_a_Combined-Cycle_Power_Plant_A_Simulation_Study_with_Modelica_Fast_Start-up_of_a_Combined-Cycle_Power_Plant_a_Simulation_Study_with_Modelica
5.
Rza˛dkowski
,
R.
,
Lampart
,
P.
,
Kwapisz
,
L.
,
Szymaniak
,
M.
, and
Drewczyński
,
M.
,
2010
, “
Transient Thermodynamic, Thermal and Structure Analysis of a Steam Turbine During Its Start-Up
,”
ASME J. Eng. Gas Turbines and Power
,
141
(
11
), p.
111004
.10.1115/GT2010-22813
6.
Shul'zhenko
,
M. G.
, and
Kolyadyuk
,
A. S.
,
2021
, “
Thermal Strength of Steam Turbine Shut-Off and Control Valves Body
,”
Strength Mater.
53
(
6
), pp.
877
888
.10.1007/s11223-022-00355-w
7.
Can Gülen
,
S.
, and
Kim
,
K.
,
2013
, “
Gas Turbine Combined Cycle Dynamic Simulation: A Physics Based Simple Approach
,”
ASME J. Eng. Gas Turbines Power
,
136
(
1
), p.
011601
.10.1115/1.4025318
8.
Xu
,
N.
,
Wang
,
Q. C.
, and
Liu
,
Z. S.
,
2016
, “
Optimization and Experiment Study on Start-Up Temperature Control Curve of Turbine Rotor
,”
ASME J. Mech. Eng.
,
52
(
2
), pp.
189
194
.10.3901/JME.2016.02.189
9.
Ji
,
D. M.
,
Sun
,
J. Q.
,
Sun
,
Q.
, Guo, H. C., Ren, J. X., and Zhu, Q. J.,
2018
, “
Optimization of Start-Up Scheduling and Life Assessment for a Steam Turbine
,”
Energy
,
160
, pp.
19
32
.10.1016/j.energy.2018.07.015
10.
Nowak
,
G.
, and
Rusin
,
A.
,
2016
, “
Using the Artificial Neural Network to Control the Steam Turbine Heating Process
,”
Appl. Therm. Eng.
,
108
, pp.
204
210
.10.1016/j.applthermaleng.2016.07.129
11.
Li
,
M.
,
Guo
,
Y.
,
Ma
,
J.
, and Gao, J.,
2018
, “
Rotor Start-Up Optimization of Steam Turbine Based on Genetic Algorithm
,”
J. Xi'an Jiaotong Univ.
,
52
(
1
), pp.
54
60
.
12.
Nowak
,
G.
,
Rusin
,
A.
,
Łukowicz
,
H.
, and
Tomala
,
M.
,
2020
, “
Improving the Power Unit Operation Flexibility by the Turbine Start-Up Optimization
,”
Energy
,
198
, p.
117303
.10.1016/j.energy.2020.117303
13.
Shirakawa
,
M.
, and
Arakawa
,
M.
,
2020
, “
Multi-Objective Evaluation Method for Combined Cycle Power Plant Start-Up
,”
IFAC J. Syst. Control
,
13
, p.
100101
.10.1016/j.ifacsc.2020.100101
14.
Topel
,
M.
,
Vitrano
,
A.
, and
Laumert
,
B.
,
2018
, “
Utilization of a Thermo-Mechanical Model Coupled With Multi-Objective Optimization to Enhance the Start-Up Process of Solar Steam Turbines
,”
ASME
Paper No. GT2018-75829.10.1115/GT2018-75829
15.
Yoshida
,
Y.
,
Yoshida
,
T.
,
Enomoto
,
Y.
, Osaki, N., Nagahama, Y., and Tsuge, Y.,
2018
, “
Start-Up Optimization of Combined Cycle Power Plants: A Field Test in a Commercial Power Plant
,”
ASME J. Eng. Gas Turbine Power
,
141
(
3
), p.
031002
.10.1115/1.4041521
16.
Wang
,
W.
,
Zhang
,
H.
,
Liu
,
P.
,
Li
,
Z.
,
Ni
,
W.
,
Uechi
,
H.
, and
Matsumura
,
T.
,
2016
, “
A Finite Element Method Approach to the Temperature Distribution in the Inner Casing of a Steam Turbine in a Combined Cycle Power Plant
,”
Appl. Therm. Eng.
,
105
, pp.
18
27
.10.1016/j.applthermaleng.2016.05.124
17.
Rúa
,
J.
, and
Nord
,
L. O.
,
2020
, “
Optimal Control of Flexible Natural Gas Combined Cycles With Stress Monitoring: Linear versus Nonlinear Model Predictive Control
,”
Appl. Energy
,
265
, p.
114820
.10.1016/j.apenergy.2020.114820
18.
Topel
,
M.
,
Nilsson
,
Å.
,
Jöcker
,
M.
, and
Laumert
,
B.
,
2017
, “
Investigation Into the Thermal Limitations of Steam Turbines During Start-Up Operation
,”
ASME J. Eng. Gas Turbines Power
,
140
(
1
), p.
012603
.10.1115/1.4037664
19.
Yoshida
,
Y.
,
Tokuda
,
Y.
,
Yoshida
,
T.
,
Enomoto
,
Y.
,
Osaki
,
N.
,
Nagahama
,
Y.
, and
Tsuge
,
Y.
,
2020
, “
Modeless Start-Up Control for Operational Flexibility of Combined Cycle Power Plants
,”
J. Chem. Eng. Jpn.
,
53
(
10
), pp.
636
645
.10.1252/jcej.19we190
20.
Ferrand
,
A.
,
Bellenoue
,
M.
,
Bertin
,
Y.
, and
Marconi
,
P.
,
2021
, “
Improvement of Turboshaft Restart Time Through an Experimental and Numerical Investigation
,”
ASME J. Eng. Gas Turbines Power
,
143
(
3
), p.
031015
.10.1115/1.4049653
21.
Bahlawan
,
H.
,
Morini
,
M.
,
Pinelli
,
M.
,
Ruggero Spina
,
P.
, and
Venturini
,
M.
,
2018
, “
Development of Reliable NARX Models of Gas Turbine Cold, Warm, and Hot Start-Up
,”
ASME J. Eng. Gas Turbines Power
,
140
(
7
), p.
071202
.10.1115/1.4038838
22.
Dominiczak
,
K.
,
Rządkowski
,
R.
,
Radulski
,
W.
, and
Szczepanik
,
R.
,
2015
, “
Online Prediction of Temperature and Stress in Steam Turbine Components Using Neural Networks
,”
ASME J. Eng. Gas Turbines Power
,
138
(
5
), p.
052606
.10.1115/1.4031626
23.
Zhang
,
H.
,
Xie
,
D.
,
Yu
,
Y.
, and
Yu
,
L.
,
2016
, “
Online Optimal Control Schemes of Inlet Steam Temperature During Startup of Steam Turbines Considering Low Cycle Fatigue
,”
Energy
,
117
(
1
), pp.
105
115
.10.1016/j.energy.2016.10.075
24.
Nannarone
,
A.
, and
Klein
,
S. A.
,
2018
, “
Start-Up Optimization of a CCGT Power Station Using Model-Based Gas Turbine Control
,”
ASME J. Eng. Gas Turbines Power
,
141
(
4
), p.
041018
.10.1115/1.4041273
25.
Liu
,
Y. F.
,
Hao
,
R. T.
, and
Gao
,
J. Q.
,
2008
, “
The Influence of Rotor Physical Property on Thermal Stresses in a Supercritical Steam Turbine During Its Startup
,”
J. Eng. Therm. Energy Power
,
23
(
1
), pp.
21
23
.
26.
Ramberg
,
W.
,
1943
, “
Description of Stress-Strain Curves by Three Parameters
,” National Advisory Committee for Aeronautics, Technical Note 1943, Report No.
NACA-TN-902
.https://ntrs.nasa.gov/citations/19930081614
27.
Jing
,
J. P.
, and
Meng
,
G.
,
2003
, “
On the Fatigue-Creep Damage Analysis of a Steam Turbine Rotor by a Nonlinear Continuum Damage Mechanics Model
,”
Proc. CSEE
,
23
(
9
), pp.
167
172
.https://www.researchgate.net/publication/290348436_On_the_fatigue-creep_damage_analysis_of_a_steam_turbine_rotor_by_a_nonlinear_continuum_damage_mechanics_model
28.
Li
,
Y. W.
,
Li
,
C. B.
,
Wang
,
M. Y.
, W, Z. Q.,
1998
, “
A Study on the Low Cycle Fatigue Behavior and the Evolution Law of Damage in 30Cr1Mo1V Rotor Steel
,”
Turbine Technol.
,
40
(
3
), pp.
58
61
.
29.
Lemaitre
,
J.
,
Chaboche
,
J. L.
, and
Maji
,
A. K.
,
1993
, “
Mechanics of Solid Materials
,”
J. Eng. Mech.
,
119
(
3
), pp.
642
643
.10.1061/(ASCE)0733-9399(1993)119:3(642.2)
30.
Zhao
,
Y.
,
Wang
,
S.
,
Duan
,
L.
,
Lei
,
Y.
,
Cao
,
P.
, and
Hao
,
J.
,
2008
, “
Primary Air Pollutant Emissions of Coal-Fired Power Plants in China: Current Status and Future Prediction
,”
Atmos. Environ.
,
42
(
36
), pp.
8442
8452
.10.1016/j.atmosenv.2008.08.021
31.
Fan
,
Z. L.
,
Zhou
,
Y. B.
,
Liu
,
D. H.
, Wei, X. F., Guo, Q., and Wang, K.,
2019
, “
Emission Characteristics of Nitrogen Oxides From Gas Steam Combined Cycle Unit
,”
Chem. Ind. Eng. Prog.
,
38
(
4
), pp.
2056
2062
.https://hgjz.cip.com.cn/EN/Y2019/V38/I04/2056
32.
Song
,
B.
,
Wang
,
F.
,
Lin
,
H.
, Xiao, J. F., Li, X. F., Wang, W., and Gao, S.,
2016
, “
Study on Pollutant Discharge Rules During Start-Up Process for M701F Gas Turbine
,”
Gas Turbine Technol.
,
29
(
1
), pp.
59
63
.
33.
Wagner
,
W.
, and
Kruse
,
A.
,
1998
,
IAPWS Industrial Formulation 1997 for the Thermodynamic Properties of Water and Steam: Properties of Water and Steam
,
Springer
,
Berlin, Heidelberg
, pp.
7
37
.
34.
Ding
,
Y. Y.
,
2010
,
Steam Turbine Strength Calculation Manual
,
China Electric Power Press
, Beijing, China, pp.
426
–4
34
.
35.
Lou
,
X. Y.
,
Sheng
,
D. R.
,
Chen
,
J. H.
, Chen, J. L., and Ren, H. R.,
2007
, “
Calculation of Finite Element of Thermal Stress and Analysis of Low-Cyclic Fatigue Life for Non-Central Hole Rotor of 135 MW Turbine
,”
Zhejiang Electric Power
,
26
(
2
), pp.
10
14
.
You do not currently have access to this content.