Abstract

The safety of a fielded integrally bladed rotor (IBR) is often assessed through vibration testing. Responses due to various types of excitation are measured and processed and can be inputs to follow-on analyses, such as mistuning identification. One such excitation technique is the traveling wave excitation (TWE) where all blades are simultaneously excited at phase differences that attempt to replicate naturally occurring mode shapes and certain operating conditions. This test relies on noncontact exciters, e.g., magnets and speakers, that are often not directly measured. As a result, formulating the frequency response function (FRF) is difficult and the extraction of system modal data using FRF fitting techniques in the absence of FRFs is not possible. This paper presents an approach to use measured responses from TWE tests. It is shown that the fast Fourier transform (FFT) of the TWE inputs is mostly independent over the prescribed frequency range. Consequently, the output spectral density matrix can be formulated in an operational modal analysis (OMA) sense, where direct measurement of the inputs is not needed. A full spectral density matrix is then formulated from a single measurement on each blade obtained during a single test, thus reducing the number of measurement locations and testing excitation conditions. This matrix is fit by a polyreference-least squares complex frequency-domain (P-LSCF) system identification technique tailored for OMA-type measurements. The methodology is tested using simulated TWE data for an IBR model using different damping levels. Comparisons between identified modal data and those used to create the model are made and show the methodology accurately predicts underlying system information even for closely spaced modes that are common to IBRs. Finally, the method is used on experimental TWE data of an industrial IBR.

References

1.
Feiner
,
D. M.
, and
Griffin
,
J. H.
,
2004
, “
Mistuning Identification of Bladed Disks Using a Fundamental Mistuning Model–Part I: Theory
,”
ASME J. Turbomach.
,
126
(
1
), pp.
150
158
.10.1115/1.1643913
2.
Feiner
,
D. M.
, and
Griffin
,
J. H.
,
2004
, “
Mistuning Identification of Bladed Disks Using a Fundamental Mistuning Model–Part II: Application
,”
ASME J. Turbomach.
,
126
(
1
), pp.
159
165
.10.1115/1.1643914
3.
Mignolet
,
M. P.
,
Rivas-Guerra
,
A. J.
, and
Delor
,
J. P.
,
2001
, “
Identification of Mistuning Characteristics of Bladed Disks From Free Response Data–Part I
,”
ASME J. Eng. Gas Turbines Power
,
123
(
2
), pp.
395
403
.10.1115/1.1338949
4.
Rivas-Guerra
,
A. J.
,
Mignolet
,
M. P.
, and
Delor
,
J. P.
,
2001
, “
Identification of Mistuning Characteristics of Bladed Disks From Free Response Data– Part II
,”
ASME J. Eng. Gas Turbines Power
,
123
(
2
), pp.
404
411
.10.1115/1.1338950
5.
Lupini
,
A.
,
Shim
,
J.
,
Callan
,
S.
, and
Epureanu
,
B. I.
,
0
, “
Mistuning Identification Technique Based on Blisk Detuning
,”
AIAA J.
, 59(8), pp.
1
9
.10.2514/1.J060209
6.
Maywald
,
T.
,
Backhaus
,
T.
,
Schrape
,
S.
, and
Kühhorn
,
A.
,
2017
, “
Geometric Model Update of Blisks and Its Experimental Validation for a Wide Frequency Range
,”
ASME
Paper No. GT2017-63446.10.1115/GT2017-63446
7.
Beirow
,
B.
,
Kühhorn
,
A.
, and
Nipkau
,
J.
,
2009
, “
On the Influence of Strain Gauge Instrumentation on Blade Vibrations of Integral Blisk Compressor Rotors Applying a Discrete Model
,”
ASME
Paper No. GT2009-59207.10.1115/GT2009-59207
8.
Hönisch
,
P.
,
Kühhorn
,
A.
, and
Beirow
,
B.
,
2011
, “
Experimental and Numerical Analyses of radial turbine Blisks With Regard to Mistuning
,”
ASME
Paper No. GT2011-45359.10.1115/GT2011-45359
9.
Zhao
,
X.
,
Li
,
H.
,
Yang
,
S.
,
Fan
,
Z.
,
Dong
,
J.
, and
Cao
,
H.
,
2021
, “
Blade Vibration Measurement and Numerical Analysis of a Mistuned Industrial Impeller in a Single-Stage Centrifugal Compressor
,”
J. Sound Vib.
,
501
, p.
116068
.10.1016/j.jsv.2021.116068
10.
DiMaggio
,
S. J.
,
Duron
,
Z. H.
, and
Davis
,
G.
,
2003
, “
Approximate Modal Identification of Lightly Damped, Highly Symmetric Bladed Disks
,”
AIAA J.
,
41
(
6
), pp.
1105
1112
.10.2514/2.2051
11.
Figaschewsky
,
F.
, and
Kühhorn
,
A.
,
2018
, “
An Inverse Approach to Identify Tuned Aerodynamic Damping, System Frequencies and Mistuning. Part 1: Theory and Benchmark Under Rotating Conditions
,”
Proceedings of the 15th International Symposium on Unsteady Aero-Dynamics, Aeroacoustics & Aeroelasticity of Turbomachines ISUAAAT15
, University of Oxford, Oxford, UK, Paper No.
ISUAAAT 15-048
.https://www.semanticscholar.org/paper/ISUAAAT-15-048-AN-INVERSE-APPROACH-TO-IDENTIFY-%2C-.-Figaschewsky-K%C3%BChhorn/a48697c82aff99f49c25f230567d05a492688895
12.
Beirow
,
B.
, and
Figaschewsky
,
F.
,
2018
, “
An Inverse Approach to Identify Tuned Aerodynamic Damping, System Frequencies, and Mistuning. Part 2: Application to Blisks at Rest
,”
Proceedings of the 15th International Symposium on Unsteady Aero-Dynamics, Aeroacoustics & Aeroelasticity of Turbomachines ISUAAAT15
, University of Oxford, Oxford, UK, Paper No.
ISUAAAT 15-021
.https://www.semanticscholar.org/paper/ISUAAAT-15-021-AN-INVERSE-APPROACH-TO-IDENTIFY-%2C-%2C-Beirow-Figaschewsky/8eecc984dd0b503cd18cc0f5d4fc0ff11976cd93
13.
Nyssen
,
F.
, and
Golinval
,
J.-C.
,
2016
, “
Identification of Mistuning and Model Updating of an Academic Blisk Based on Geometry and Vibration Measurements
,”
Mech. Syst. Signal Process.
,
68–69
, pp.
252
264
.1016/j.ymssp.2015.08.006
14.
D'Souza
,
K.
,
Dunn
,
M.
, and
Epureanu
,
B. I.
,
2017
, “
Mistuning and Damping Experiments at Design Speed Combined With Computational Tools
,”
ASME
Paper No. GT2017-63287.10.1115/GT2017-63287
15.
Salhi
,
B.
,
Lardiès
,
J.
,
Berthillier
,
M.
,
Voinis
,
P.
, and
Bodel
,
C.
,
2008
, “
Modal Parameter Identification of Mistuned Bladed Disks Using Tip Timing Data
,”
J. Sound Vib.
,
314
(
3–5
), pp.
885
906
.10.1016/j.jsv.2008.01.050
16.
Hu
,
D.
,
Wang
,
W.
,
Zhang
,
X.
, and
Chen
,
K.
,
2021
, “
On-Line Real-Time Mistuning Identification and Model Calibration Method for Rotating Blisks Based on Blade Tip Timing (Btt)
,”
Mech. Syst. Signal Process.
,
147
, p.
107074
.10.1016/j.ymssp.2020.107074
17.
Gillaugh
,
D. L.
,
Kaszynski
,
A. A.
,
Brown
,
J. M.
,
Beck
,
J. A.
, and
Slater
,
J. C.
,
2019
, “
Mistuning Evaluation Comparison Via as-Manufactured Models, Traveling Wave Excitation, and Compressor Rigs
,”
ASME J. Eng. Gas Turbines Power
,
141
(
6
), p.
061006
.10.1115/1.4042079
18.
Jones
,
K. W.
, and
Cross
,
C. J.
,
2003
, “
Traveling Wave Excitation System for Bladed Disks
,”
J. Propul. Power
,
19
(
1
), pp.
135
141
.10.2514/2.6089
19.
Berruti
,
T.
,
Firrone
,
C. M.
, and
Gola
,
M. M.
,
2010
, “
A Test Rig for Non-Contact Travelling Wave Excitation of a Bladed Disk With Underplatform Dampers
,”
ASME
Paper No. GT2010-22879.10.1115/GT2010-22879
20.
Beck
,
J. A.
,
Justice
,
J. A.
,
Scott-Emuakpor
,
O. E.
,
George
,
T. J.
, and
Brown
,
J. M.
,
2015
, “
Next Generation Traveling-Wave Excitation System for Integrally Bladed Rotors
,”
J. Aerosp. Eng.
,
28
(
6
), p.
04015005
.10.1061/(ASCE)AS.1943-5525.0000493
21.
Holland
,
D. E.
,
Castanier
,
M. P.
,
Ceccio
,
S. L.
,
Epureanu
,
B. I.
, and
Filippi
,
S.
,
2010
, “
Testing and Calibration Procedures for Mistuning Identification and Traveling Wave Excitation of Blisks
,”
ASME J. Eng. Gas Turbines Power
,
132
(
4
), p.
042502
.10.1115/1.3204656
22.
Grant
,
J. J.
,
Cosmo
,
M. R.
,
Hou
,
J. F.
,
Smith
,
E. O.
, and
de Baar
,
J. H. S.
,
2018
, “
An Acoustic Travelling Wave System for the Analysis of Blisk Mistuning
,”
ASME
Paper No. GT2018-75666.10.1115/GT2018-75666
23.
Carassale
,
L.
, and
Rizzetto
,
E.
,
2021
, “
Experimental Investigation on a Bladed Disk With Traveling Wave Excitation
,”
Sensors
,
21
(
12
), p.
3966
.10.3390/s21123966
24.
Lim
,
S.-H.
,
2005
, “
Dynamic Analysis and Design Strategies for Mistuned Bladed Disks
,”
Ph.D., thesis
,
University of Michigan-Ann Arbor
, Ann Arbor, MI.https://theses.hal.science/tel-00375423/document
25.
Madden
,
A. C.
,
Castanier
,
M. P.
, and
Epureanu
,
B. I.
,
2008
, “
Reduced-Order Model Construction Procedure for Robust Mistuning Identification of Blisks
,”
AIAA J.
,
46
(
11
), pp.
2890
2898
.10.2514/1.37314
26.
Madden
,
A. C.
,
Castanier
,
M. P.
, and
Epureanu
,
B. I.
,
2011
, “
Mistuning Identification of Blisks at Higher Frequencies
,”
AIAA J.
,
49
(
6
), pp.
1299
1302
.10.2514/1.J050427
27.
Peeters
,
B.
,
Van der Auweraer
,
H.
,
Guillaume
,
P.
, and
Leuridan
,
J.
,
2004
, “
The Polymax Frequency-Domain Method: A New Standard for Modal Parameter Estimation?
,”
Shock Vib.
,
11
(
3–4
), pp.
395
409
.10.1155/2004/523692
28.
Judge
,
J. A.
,
Pierre
,
C.
, and
Ceccio
,
S. L.
,
2009
, “
Experimental Mistuning Identification in Bladed Disks Using a Component-Mode-Based Reduced-Order Model
,”
AIAA J.
,
47
(
5
), pp.
1277
1287
.10.2514/1.41214
29.
Beck
,
J. A.
,
Brown
,
J. M.
,
Gillaugh
,
D. L.
,
Carper
,
E. B.
, and
Kaszynski
,
A. A.
,
2021
, “
Integrally Bladed Rotor Mistuning Identification and Model Updating Using Geometric Mistuning Models
,”
ASME J. Eng. Gas Turbines Power
, 143(12), p.
121012
.10.1115/1.4051111
30.
Ewins
,
D.
,
2010
, “
Control of Vibration and Resonance in Aero Engines and Rotating Machinery – An Overview
,”
Int. J. Pressure Vessels Piping
,
87
(
9
), pp.
504
510
.10.1016/j.ijpvp.2010.07.001
31.
Breard
,
C.
,
Green
,
J. S.
, and
Imregun
,
M.
,
2003
, “
Low-Engine-Order Excitation Mechanisms in Axial-Flow Turbomachinery
,”
J. Propul. Power
,
19
(
4
), pp.
704
712
.10.2514/2.6160
32.
Holland
,
D.
,
Rodgers
,
J.
, and
Epureanu
,
B.
,
2012
, “
Measurement Point Selection and Modal Damping Identification for Bladed Disks
,”
Mech. Syst. Signal Process.
,
33
, pp.
97
108
.10.1016/j.ymssp.2012.06.017
33.
Beck
,
J. A.
,
Kaszynski
,
A. A.
,
Brown
,
J. M.
,
Gillaugh
,
D. L.
, and
Scott-Emuakpor
,
O. E.
,
2018
, “
Selection of Dynamic Testing Measurement Locations for Integrally Bladed Disks
,”
ASME
Paper No. GT2018-76791.10.1115/GT2018-76791
34.
Aldridge
,
D. F.
,
1992
, “
Mathematics of Linear Sweeps
,”
Can. J. Explor. Geophys.
,
28
(
1
), pp.
62
68
.https://csegjournal.com/assets/pdfs/archives/1992_06/1992_06_math_linear_sweeps.pdf
35.
Guillaume
,
P.
,
Verboven
,
P.
,
Vanlanduit
,
S.
,
der Auweraer
,
H. V.
, and
Peeters
,
B.
,
2003
, “
A Poly-Reference Implementation of the Least-Squares Complex Frequency-Domain Estimator
,”
Proceedings of 21st International Modal Analysis Conference
, Kissimmee, FL, Feb. 3–6, pp.
1762
1770
.https://www.researchgate.net/publication/265423092_A_polyreference_implementation_of_the_least-squares_complex_frequency-domain_estimator
36.
Peeters
,
B.
, and
Van der Auweraer
,
H.
,
2005
, “
Polymax: A Revolution in Operational Modal Analysis
,”
Proceedings of the 1st International Operational Modal Analysis Conference
, Copenhagen, Denmark, Apr. 26–27, p.
106926
.https://www.researchgate.net/publication/268048253_PolyMax_a_revolution_in_operational_modal_analysis
37.
Van der Auweraer
,
H.
, and
Peeters
,
B.
,
2004
, “
Discriminating Physical Poles From Mathematical Poles in High Order Systems: Use and Automation of the Stabilization Diagram
,”
Proceedings of the 21st IEEE Instrumentation and Measurement Technology Conference (IEEE Cat. No.
04CH37510
), Como, Italy, May 18–20, pp.
2193
2198
.10.1109/IMTC.2004.1351525
38.
Kaszynski
,
A. A.
,
Beck
,
J. A.
, and
Brown
,
J. M.
,
2014
, “
Automated Finite Element Model Mesh Updating Scheme Applicable to Mistuning Analysis
,”
ASME
Paper No. GT2014-26925.10.1115/GT2014-26925
39.
Beck
,
J. A.
,
Brown
,
J. M.
,
Kaszynski
,
A. A.
,
Cross
,
C. J.
, and
Slater
,
J. C.
,
2015
, “
Geometric Mistuning Reduced-Order Models for Integrally Bladed Rotors With Mistuned Disk–Blade Boundaries
,”
ASME J. Turbomach.
,
137
(
7
), p.
071001
.10.1115/1.4029122
40.
Beck
,
J. A.
,
Brown
,
J. M.
,
Cross
,
C. J.
, and
Slater
,
J. C.
,
2014
, “
Component-Mode Reduced-Order Models for Geometric Mistuning of Integrally Bladed Rotors
,”
AIAA J.
,
52
(
7
), pp.
1345
1356
.10.2514/1.J052420
41.
Bendat
,
J. S.
, and
Piersol
,
A. G.
,
2000
,
Random Data: Analysis and Measurement Procedures
, 3rd ed.,
Wiley Inc
., Hoboken, NJ.
42.
Beck
,
J. A.
,
Brown
,
J. M.
,
Scott-Emuakpor
,
O. E.
,
Carper
,
E. B.
, and
Kaszynski
,
A. A.
,
2018
, “
Modal Expansion Method for Eigensensitivity Calculations of Cyclically Symmetric Bladed Disks
,”
AIAA J.
,
56
(
10
), pp.
4112
4120
.10.2514/1.J057322
43.
D'ambrogio
,
W.
, and
Fregolent
,
A.
,
2003
, “
Higher-Order Mac for the Correlation of Close and Multiple Modes
,”
Mech. Syst. Signal Process.
,
17
(
3
), pp.
599
610
.10.1006/mssp.2002.1468
You do not currently have access to this content.