Abstract

In engineering practice, the amount of measured data is often scarce and limited, posing a challenge in uncertainty quantification (UQ) and propagation. Data-driven polynomial chaos (DDPC) is an effective way to tackle this challenge. However, the DDPC method faces problems from the lack of robustness and convergence difficulty. In this paper, a preconditioner-based data-driven polynomial chaos (PDDPC) method is developed to deal with UQ problems with scarce measured data. Two numerical experiments are used to validate the computational robustness, convergence property, and application potential in case of scarce data. Then, the PDDPC is first applied to evaluate the uncertain impacts of real leading edge (LE) errors on the aerodynamic performance of a two-dimensional compressor blade. Results show that the overall performance of compressor blade is degraded and there is a large performance dispersion at off-design incidence conditions. The actual blade performance has a high probability of deviating from the nominal performance. Under the influence of uncertain LE geometry, the probability distributions of the total pressure loss coefficient and static pressure ratio have obvious skewness characteristics. Compared with the PDDPC method, the UQ results obtained by the fitted Gaussian and Beta probability distributions seriously underestimate the performance dispersion of compressor blade. The mechanism analysis illustrates that the large flow variation around the leading edge is the main reason for the overall performance degradation and the fluctuations of the entire flow field.

References

1.
Tain
,
L.
, and
Cumpsty
,
N. A.
,
2000
, “
Compressor Blade Leading Edges in Subsonic Compressible Flow
,”
Proc. Inst. Mech. Eng., Part C
,
214
(
1
), pp.
221
242
.10.1243/0954406001522921
2.
Goodhand
,
M. N.
,
Miller
,
R. J.
, and
Lung
,
H. W.
,
2014
, “
The Impact of Geometric Variation on Compressor Two-Dimensional Incidence Range
,”
ASME J. Turbomach.
,
137
(
2
), p.
021007
.10.1115/1.4028355
3.
Wang
,
P.
,
Li
,
S.
,
Zhang
,
D. H.
, and
Li
,
Y. H.
,
2014
, “
The Machining Error Control of Blade Shape Based on Multivariate Statistical Process Control
,”
Proc. Inst. Mech. Eng., Part B
,
229
(
11
), pp.
1912
1924
.10.1177/0954405414540648
4.
Wang
,
J. Y.
,
Wang
,
B. T.
,
Yang
,
H. L.
,
Sun
,
Z. Z.
,
Zhou
,
K.
, and
Zheng
,
X. Q.
,
2023
, “
Compressor Geometric Uncertainty Quantification Under Conditions From Near Choke to Near Stall
,”
Chin. J. Aeronaut.
,
36
(
3
), pp.
16
29
.10.1016/j.cja.2022.10.012
5.
Liu
,
B. J.
,
Liu
,
J. X.
,
Yu
,
X. J.
, and
An
,
G. F.
,
2022
, “
A Novel Decomposition Method for Manufacture Variations and the Sensitivity Analysis on Compressor Blades
,”
Aerospace
,
9
(
10
), p.
542
.10.3390/aerospace9100542
6.
Guo
,
Z. T.
,
Chu
,
W. L.
, and
Zhang
,
H. G.
,
2022
, “
A Data-Driven Non-Intrusive Polynomial Chaos for Performance Impact of High Subsonic Compressor Cascades With Stagger Angle and Profile Errors
,”
Aerosp. Sci. Technol.
,
129
, p.
107802
.10.1016/j.ast.2022.107802
7.
Lange
,
A.
,
Voigt
,
M.
,
Vogeler
,
K.
,
Schrapp
,
H.
,
Johann
,
E.
, and
Gümmer
,
V.
,
2010
, “
Probabilistic CFD Simulation of a High-Pressure Compressor Stage Taking Manufacturing Variability Into Account
,”
ASME
Paper No. GT2010-22484.10.1115/GT2010-22484
8.
Duque
,
E. P.
, and
Lawrence
,
S.
,
2019
, “
Spectre: A Computational Environment for Managing Total Uncertainty Quantification of CFD Studies
,”
AIAA
Paper No. 2019-2221.10.2514/6.2019-2221
9.
Wang
,
X. J.
,
Du
,
P. C.
,
Yao
,
L. C.
,
Zou
,
Z. P.
, and
Zeng
,
F.
,
2023
, “
Uncertainty Analysis of Measured Geometric Variations in Turbine Blades and Impact on Aerodynamic Performance
,”
Chin. J. Aeronaut.
,
36
(
6
), pp.
140
160
.10.1016/j.cja.2023.03.041
10.
Wang
,
H. H.
,
Gao
,
L. M.
,
Yang
,
G.
, and
Wu
,
B. H.
,
2023
, “
A Data-Driven Robust Design Optimization Method and Its Application in Compressor Blade
,”
Phys. Fluids
,
35
(
6
), p.
066114
.10.1063/5.0150040
11.
Hu
,
X. Z.
,
Chen
,
X. Q.
,
Parks
,
G. T.
, and
Yao
,
W.
,
2016
, “
Review of Improved Monte Carlo Methods in Uncertainty-Based Design Optimization Uncertainty Analysis of Measured Geometric Variations in Turbine Blades and Impact on Aerodynamic Performance for Aerospace Vehicles
,”
Prog. Aerosp. Sci.
,
86
, pp.
20
27
.10.1016/j.paerosci.2016.07.004
12.
Luo
,
J. Q.
, and
Liu
,
F.
,
2018
, “
Statistical Evaluation of Performance Impact of Manufacturing Variability by an Adjoint Method
,”
Aerosp. Sci. Technol.
,
77
, pp.
471
484
.10.1016/j.ast.2018.03.030
13.
Ghisu
,
T.
,
Parks
,
G. T.
,
Jarrett
,
J. P.
, and
John Clarkson
,
P.
,
2010
, “
Adaptive Polynomial Chaos for Gas Turbine Compression Systems Performance Analysis
,”
AIAA J.
,
48
(
6
), pp.
1156
1170
.10.2514/1.J050012
14.
Mourousias
,
N.
,
García-Gutiérrez
,
A.
,
Malim
,
A.
,
Fernández
,
D. D.
,
Marinus
,
B. G.
, and
Runacres
,
M. C.
,
2023
, “
Uncertainty Quantification Study of the Aerodynamic Performance of High-Altitude Propellers
,”
Aerosp. Sci. Technol.
,
133
, p.
108108
.10.1016/j.ast.2023.108108
15.
Garzon
,
V. E.
, and
Darmofal
,
D. L.
,
2003
, “
Impact of Geometric Variability on Axial Compressor Performance
,”
ASME J. Turbomach.
,
125
(
4
), pp.
692
703
.10.1115/1.1622715
16.
Zhang
,
Q.
,
Xu
,
S. R.
,
Yu
,
X. J.
,
Liu
,
J. X.
,
Wang
,
D. X.
, and
Huang
,
X. Q.
,
2021
, “
Nonlinear Uncertainty Quantification of the Impact of Geometric Variability on Compressor Performance Using an Adjoint Method
,”
Chin. J. Aeronaut.
,
35
(
2
), pp.
17
21
.10.1016/j.cja.2021.06.007
17.
Ma
,
C.
,
Gao
,
L.
,
Wang
,
H.
,
Li
,
R.
, and
Wu
,
B.
,
2020
, “
Influence of Leading Edge With Real Manufacturing Error on Aerodynamic Performance of High Subsonic Compressor Cascades
,”
Chin. J. Aeronaut.
,
34
(
6
), pp.
220
232
.10.1016/j.cja.2020.08.018
18.
Wang
,
J. Y.
, and
Zheng
,
X. Q.
,
2020
, “
Review of Geometric Uncertainty Quantification in Gas Turbines
,”
ASME J. Eng. Gas Turbines Power
,
142
(
7
), p.
070801
.10.1115/1.4047179
19.
Muscolino
,
G.
,
Santoro
,
R.
, and
Sofi
,
A.
,
2016
, “
Reliability Analysis of Structures With Interval Uncertainties Under Stationary Stochastic Excitations
,”
Comput. Method. Appl. Mech. Eng.
,
300
, pp.
47
69
.10.1016/j.cma.2015.10.023
20.
Kiureghian
,
A. D.
, and
Liu
,
P. L.
,
1986
, “
Structural Reliability Under Incomplete Probability Information
,”
J. Eng. Mech.
,
112
(
1
), pp.
85
104
.10.1061/(ASCE)0733-9399(1986)112:1(85)
21.
Oladyshkin
,
S.
,
Class
,
H.
,
Helmig
,
R.
, and
Nowak
,
W.
,
2011
, “
A Concept for Data-Driven Uncertainty Quantification and Its Application to Carbon Dioxide Storage in Geological Formations
,”
Adv. Water Resour.
,
34
(
11
), pp.
1508
1518
.10.1016/j.advwatres.2011.08.005
22.
Oladyshkin
,
S.
, and
Nowak
,
W.
,
2012
, “
Data-Driven Uncertainty Quantification Using the Arbitrary Polynomial Chaos Expansion
,”
Reliab. Eng. Syst. Saf.
,
106
, pp.
179
190
.10.1016/j.ress.2012.05.002
23.
Pepper
,
N.
,
Montomoli
,
F.
, and
Sharma
,
S.
,
2021
, “
Data Fusion for Uncertainty Quantification With Non-Intrusive Polynomial Chaos
,”
Comput. Method. Appl. Mech. Eng.
,
374
, p.
113577
.10.1016/j.cma.2020.113577
24.
Ahlfeld
,
R.
,
Belkouchi
,
B.
, and
Montomoli
,
F.
,
2016
, “
SAMBA: Sparse Approximation of Moment-Based Arbitrary Polynomial Chaos
,”
J. Comput. Phys.
,
320
, pp.
1
16
.10.1016/j.jcp.2016.05.014
25.
Ahlfeld
,
R.
, and
Montomoli
,
F.
,
2017
, “
A Single Formulation for Uncertainty Propagation in Turbomachinery: SAMBA PC
,”
ASME J. Turbomach.
,
139
(
11
), p.
111007
.10.1115/1.4037362
26.
Guo
,
L.
,
Liu
,
Y. L.
, and
Zhou
,
T.
,
2019
, “
Data-Driven Polynomial Chaos Expansions: A Weighted Least-Square Approximation
,”
J. Comput. Phys.
,
381
, pp.
129
145
.10.1016/j.jcp.2018.12.020
27.
Li
,
R.
,
Gao
,
L.
,
Ma
,
C.
,
Lin
,
S.
, and
Zhao
,
L.
,
2020
, “
Corner Separation Dynamics in a High-Speed Compressor Cascade Based on Detached-Eddy Simulation
,”
Aerosp. Sci. Technol.
,
99
, p.
105730
.10.1016/j.ast.2020.105730
28.
Chuang-Stein
,
C.
,
2006
, “
Sample Size and the Probability of a Successful Trial
,”
Pharm. Stat.
,
5
(
4
), pp.
305
309
.10.1002/pst.232
29.
He
,
X.
,
Zhao
,
F. Z.
, and
Vahdati
,
M.
,
2021
, “
Uncertainty Quantification of Spalart–Allmaras Turbulence Model Coefficients for Compressor Stall
,”
ASME J. Turbomach.
,
143
(
8
), p.
081007
.10.1115/1.4050438
30.
Ma
,
C.
,
Gao
,
L. M.
,
Cai
,
Y. T.
, and
Li
,
R. Y.
,
2017
, “
Robust Optimization Design of Compressor Blade Considering Machining Error
,”
ASME
Paper No. GT2017-63157.10.1115/GT2017-63157
31.
Gao
,
L. M.
,
Ma
,
C.
,
Cai
,
M.
,
Li
,
R. Y.
,
Wang
,
H. H.
, and
Yang
,
G.
,
2022
, “
Influence of Uncertain Inflow Conditions on a Subsonic Compressor Cascade Based on Wind Tunnel Experiment
,”
Proc. Inst. Mech. Eng., Part C
,
236
(
15
), pp.
8285
8299
.10.1177/09544062221087584
32.
Montomoli
,
F.
,
Carnevale
,
M.
,
D'Ammaro
,
A.
,
Massini
,
M.
, and
Salvadori
,
S.
,
2019
,
Uncertainty Quantification in Computational Fluid Dynamics and Aircraft Engines
,
Springer
,
New York
.
33.
Wiener
,
N.
,
1938
, “
The Homogeneous Chaos
,”
J. Comput. Phys.
,
60
(
4
), pp.
897
936
.10.2307/2371268
34.
Xiu
,
D. B.
, and
Karniadakis
,
G. E.
,
2002
, “
The Wiener–Askey Polynomial Chaos for Stochastic Differential Equations
,”
SIAM J. Sci. Comput.
,
24
(
2
), pp.
619
644
.10.1137/S1064827501387826
35.
Xiu
,
D. B.
, and
Karniadakis
,
G. E.
,
2003
, “
Modeling Uncertainty in Flow Simulations Via Generalized Polynomial Chaos
,”
J. Comput. Phys.
,
187
(
1
), pp.
137
167
.10.1016/S0021-9991(03)00092-5
36.
Vecharynski
,
E.
,
Yang
,
C.
, and
Pask
,
J. E.
,
2015
, “
A Projected Preconditioned Conjugate Gradient Algorithm for Computing Many Extreme Eigenpairs of a Hermitian Matrix
,”
J. Comput. Phys.
,
290
, pp.
73
89
.10.1016/j.jcp.2015.02.030
37.
Wang
,
H. H.
,
Gao
,
L. M.
, and
Wu
,
B. H.
,
2023
, “
Critical Sample-Size Analysis for Uncertainty Aerodynamic Evaluation of Compressor Blades With Stagger-Angle Errors
,”
Aerospace
,
10
(
12
), p.
990
.10.3390/aerospace10120990
38.
Wang
,
H. H.
,
Gao
,
L. M.
,
Yang
,
G.
, and
Wu
,
B. H.
,
2024
, “
A Data-Driven Polynomial Chaos Method for Uncertainty Quantification of a Subsonic Compressor Cascade With Stagger Angle Errors
,”
Proc. Inst. Mech. Eng., Part A
, 238(4), pp. 591–604.10.1177/09576509241231023
You do not currently have access to this content.