Abstract

This paper develops an efficient method for calculations of stress levels, accumulation of high-cycle fatigue (HCF), and mistuning optimization aimed at the reduction of the fatigue damages for mistuned bladed disks under transient vibrations caused by variation of the rotation speed in the vicinity of resonance frequencies. The expressions for the sensitivities of the stress intensity at critical locations, and fatigue damage at loading cycles concerning the mistuning are derived analytically, providing high accuracy and speed of their evaluations. A gradient-based optimization method based on the sensitivities is applied to find the blade mistuning patterns, providing the minimum and maximum fatigue damage accumulated during gas-turbine acceleration or deceleration of a mistuned bladed disk for extending the service life. The method uses realistic large-scale finite element (FE) modeling for bladed disks, accounting for the varying damping and excitation loads with amplitude and frequency spectrum changing with rotation speed. The method has been implemented in a computer code. The fatigue accumulation caused by the transient vibration has been studied using a realistic bladed disk model. The gradient-based optimization search for mistuning patterns, providing the minimum and maximum fatigue damage accumulation during rotor acceleration is performed.

References

1.
Ewins
,
D. J.
,
1973
, “
Vibration Characteristics of Bladed Disc Assemblies
,”
J. Mech. Eng. Sci.
,
15
(
3
), pp.
165
186
.10.1243/JMES_JOUR_1973_015_032_02
2.
Kumari
,
S.
,
Satyanarayana
,
D. V. V.
, and
Srinivas
,
M.
,
2014
, “
Failure Analysis of Gas Turbine Rotor Blades
,”
J. Eng. Failure Anal.
,
45
, pp.
234
244
.10.1016/j.engfailanal.2014.06.003
3.
Castanier
,
M. P.
, and
Pierre
,
C.
,
2006
, “
Modeling and Analysis of Mistuned Bladed Disk Vibration: Current Status and Emerging Directions
,”
J. Propul. Power
,
22
(
2
), pp.
384
396
.10.2514/1.16345
4.
Petrov
,
E. P.
, and
Ewins
,
D. J.
,
2003
, “
Analysis of the Worst Mistuning Patterns in Bladed Disk Assemblies
,”
ASME J. Turbomach.
,
125
(
4
), pp.
623
631
.10.1115/1.1622710
5.
Rahimi
,
M.
, and
Ziaei-Rad
,
S.
,
2010
, “
Uncertainty Treatment in Forced Response Calculation of Mistuned Bladed Disk
,”
J. Math. Comput. Simul.
,
80
(
8
), pp.
1746
1757
.10.1016/j.matcom.2009.07.002
6.
Beirow
,
B.
,
Figaschewsky
,
F.
,
Kühhorn
,
A.
, and
Bornhorn
,
A.
,
2019
, “
Vibration Analysis of an Axial Turbine Blisk With Optimized Intentional Mistuning Pattern
,”
J. Sound Vib.
,
442
, pp.
11
27
.10.1016/j.jsv.2018.10.064
7.
Ayers
,
J. P.
,
Feiner
,
D. M.
, and
Griffin
,
J. H.
,
2006
, “
A Reduced-Order Model for Transient Analysis of Bladed Disk Forced Response
,”
ASME J. Eng. Gas Turbines Power
,
128
(
3
), pp.
466
473
.10.1115/1.2185675
8.
Kaneko
,
Y.
,
2013
, “
Study on Transient Vibration of Mistuned Bladed Disk Passing Through Resonance
,”
ASME
Paper No. GT2013-94052.10.1115/GT2013-94052
9.
Bonhage
,
M.
,
Pohle
,
L.
,
Panning-von Scheidt
,
L.
, and
Wallaschek
,
J.
,
2015
, “
Transient Amplitude Amplification of Mistuned Blisks
,”
ASME J. Eng. Gas Turbines Power
,
137
(
11
), p.
112502
.10.1115/1.4030278
10.
Siewert
,
C.
, and
Stüer
,
H.
,
2017
, “
Transient Forced Response Analysis of Mistuned Steam Turbine Blades During Startup and Coastdown
,”
ASME J. Eng. Gas Turbines Power
,
139
(
1
), p.
012501
.10.1115/1.4034151
11.
Carassale
,
L.
,
Denoel
,
V.
,
Martel
,
C.
, and
Panning-von Scheidt
,
L.
,
2021
, “
Key Features of the Transient Amplification of Mistuned System
,”
ASME J. Eng. Gas Turbines Power
,
143
(
3
), p.
031016
.10.1115/1.4049501
12.
Jing
,
T.
,
Zang
,
C.
, and
Petrov
,
E. P.
,
2022
, “
Accurate Interpolation of the Dependency of Modal Properties on the Rotation Speed for the Transient Response Analysis of Bladed Disks
,”
ASME J. Eng. Gas Turbines Power
,
144
(
2
), p.
021022
.10.1115/1.4052501
13.
Jing
,
T.
,
Zang
,
C.
, and
Petrov
,
E. P.
,
2024
, “
Sensitivity Analysis of Transient Forced Response of Mistuned Bladed Disks Under Complex Excitation and Varying Rotation Speed
,”
ASME J. Eng. Gas Turbines Power
,
146
(
3
), p.
031018
.10.1115/1.4063586
14.
Kurstak
,
E.
, and
D'Souza
,
K.
,
2021
, “
Experimental Investigation of Bladed Disk Dynamics at Design Speed Under Synchronous Vibration
,”
AIAA J.
,
59
(
10
), pp.
4123
4133
.10.2514/1.J059827
15.
Zhang
,
C.
,
Wei
,
J.
,
Jing
,
H.
,
Fei
,
C.
, and
Tang
,
W. Z.
,
2019
, “
Reliability Based Low Fatigue Lifetime Analysis of Turbine Blisk With Generalized Regression Extreme Neural Network Method
,”
Materials
,
12
(
9
), p.
1545
.10.3390/ma12091545
16.
Hou
,
N.
,
Wen
,
Z.
,
Yu
,
Q.
, and
Yue
,
Z.
,
2009
, “
Application of a Combined High and Low Cycle Fatigue Lifetime Model on Life Prediction of SC Blade
,”
Int. J. Fatigue
,
31
(
4
), pp.
616
619
.10.1016/j.ijfatigue.2008.03.021
17.
Zhang
,
D.
,
Hong
,
J.
,
Ma
,
Y.
, and
Chen
,
L.
,
2011
, “
A Probability Method for Prediction on High Cycle Fatigue of Blades Caused by Aerodynamic Loads
,”
Adv. Eng. Software
,
42
(
12
), pp.
1059
1073
.10.1016/j.advengsoft.2011.07.010
18.
Wang
,
Y.-W.
,
Song
,
L.-K.
,
Li
,
X.-Q.
, and
Bai
,
G.-C.
,
2023
, “
Probabilistic Fatigue Estimation Framework for Aeroengine Bladed Discs With Multiple Fuzziness Modelling
,”
J. Mater. Res. Technol.
,
24
, pp.
2812
2827
.10.1016/j.jmrt.2023.03.196
19.
Palmieri
,
M.
,
Cianetti
,
F.
,
Zucca
,
G.
,
Morettini
,
G.
, and
Braccesi
,
C.
,
2021
, “
Spectral Analysis of Sine-Sweep Vibration: A Fatigue Damage Estimation Method
,”
J. Mech. Syst. Signal Process.
,
157
, p.
107698
.10.1016/j.ymssp.2021.107698
20.
Suresh
,
S.
,
1998
,
Fatigue of Materials
,
Cambridge University Press
, Cambridge, UK.
21.
Kondo
,
Y.
,
2003
, “Fatigue Under Variable Amplitude Loading,”
Comprehensive Structural Integrity
(Cyclic Loading and Fatigue, Vol. 4),
I.
Milne
,
R. O.
Ritchie
, and
B. L.
Karihaloo
, eds.,
Elsevier
, Amsterdam, The Netherlands, pp.
253
279
.
22.
ASTM International,
2017
, “
Standard Practices for Cycle Counting in Fatigue Analysis
,” ASTM International, West Conshohocken, PA, Standard No.
ASTM E1049-85
.https://www.astm.org/e1049-85r17.html
23.
Marsh
,
G.
,
Wignall
,
C.
,
Thies
,
P.
,
Barltrop
,
N.
,
Incecik
,
A.
,
Venugopal
,
V.
, and
Johanning
,
L.
,
2016
, “
Review and Application of Rainflow Residue Processing Techniques for Accurate Fatigue Damage Estimation
,”
Int. J. Fatigue
,
82
, pp.
757
765
.10.1016/j.ijfatigue.2015.10.007
24.
Bishop
,
N. W. M.
, and
Sherratt
,
F.
,
2000
,
Finite Element Based Fatigue Calculations
,
NAFEMS, UK
.
25.
Boggs
,
P. T.
, and
Tolle
,
J. W.
,
1995
, “
Sequential Quadratic Programming
,”
Acta Numer.
,
4
, pp.
1
51
.10.1017/S0962492900002518
26.
Gould
,
N.
,
Orban
,
D.
, and
Toint
,
P.
,
2005
, “
Numerical Methods for Large-Scale Nonlinear Optimization
,”
Acta Numer.
,
14
, pp.
299
361
.10.1017/S0962492904000248
You do not currently have access to this content.