Abstract

The variable cycle engine (VCE) is of interest for military and supersonic civil platforms due to its improved operational flexibility. However, the increase in design and control degrees-of-freedom results in a more complex engine architecture. Numerous different VCE concepts have been proposed and studied in literature. This paper provides an overview of VCE concepts and technology. A historical outline of important activities, investigated concepts, and technical advancements is given, and the main objectives and use cases of the technology are described. In addition, specific challenges and technical solutions for variable compressors and turbines are discussed in detail. Important VCE concepts are qualitatively evaluated, and their advantages and disadvantages are highlighted.

References

1.
Karstensen
,
K.
, and
Wiggins
,
J.
,
1990
, “
A Variable-Geometry Power Turbine for Marine Gas Turbines
,”
ASME J. Turbomach.
,
112
(
2
), pp.
165
174
.10.1115/1.2927629
2.
Fulara
,
S.
,
Chmielewski
,
M.
, and
Gieras
,
M.
,
2019
, “
Experimental Research of the Small Gas Turbine With Variable Area Nozzle
,”
Proc. Inst. Mech. Eng., Part G: J. Aerosp. Eng.
,
233
(
15
), pp.
5650
5659
.10.1177/0954410019853977
3.
Kim
,
T.
, and
Hwang
,
S.
,
2006
, “
Part Load Performance Analysis of Recuperated Gas Turbines Considering Engine Configuration and Operation Strategy
,”
Energy
,
31
(
2–3
), pp.
260
277
.10.1016/j.energy.2005.01.014
4.
MacIsaac
,
B.
, and
Saravanamuttoo
,
H.
,
1975
, “
Aerothermodynamic Factors Governing the Response Rate of Gas Turbines
,”
Power Plant Controls for Aero-Gas Turbine Engines
, Ottawa, ON, Canada, pp.
23
35
.
5.
Nauroz
,
M.
,
2016
, “
Untersuchung Der Einflüsse von Geometrisch Variablen Komponenten in Fluggasturbinen Und Ihr Potenzial Zur Gezielten Verbesserung Des Kreisprozesses
,” Ph.D. thesis,
RUHR Universität Bochum
, Bochum, Germany.
6.
Murugan
,
M.
,
Ghoshal
,
A.
,
Bravo
,
L.
,
Xu
,
F.
,
Hsu
,
M.-C.
, and
Bazilevs
,
Y.
,
2018
, “
Articulating Axial-Flow Turbomachinery Rotor Blade for Enabling Variable Speed Gas Turbine Engine
,”
AIAA
Paper No. 2018-4522.10.2514/6.2018-4522
7.
Dobrzynski
,
B.
,
2012
, “
Axialturbinenstufe mit einer Ausblaseeinrichtung und Gasturbine mit der Axialturbinenstufesowie Verfahren zum Betreiben der Axialturbinenstufe
,” Düsseldorf, Germany, European Patent No. 11161498.8.
8.
Feng
,
L.
,
Wang
,
J.
, and
Choi
,
K.
,
2014
, “
A Novel Concept of the Plasma Gurney Flap
,”
Congress of International Council of the Aeronautical Sciences
, St. Petersburg, Russia, Sept. 7–12, pp.
1
7
.https://www.icas.org/ICAS_ARCHIVE/ICAS2014/data/papers/2014_0341_paper.pdf
9.
Brazier
,
M.
, and
Paulson
,
R.
,
1993
, “
Variable Cycle Engine Concept
,”
11th International Symposium on Air Breathing Engines
, Tokyo, Japan, pp.
684
693, Paper No. ISABE 93-7065
.
10.
Krebs
,
J.
,
1976
, “
Advanced Supersonic Technology Study: Engine Program Summary. Supersonic Propulsion: 1971 to 1976
,” Proceedings of the SCAR Conference, Part 1, Lagkey Research Center, Hampton, VA, Nov. 9–12, p. 353, Paper No.
NASA-CP-001-PT-1
.https://adsabs.harvard.edu/full/1976NASCP...1..353K
11.
Aleid
,
L.
,
1997
, “
Variable Cycle Propulsion Systems for a Supersonic Civil Transport
,”
Ph.D. thesis
,
Cranfield University
, Cranfield, UK.http://hdl.handle.net/1826/4433
12.
Allan
,
R.
,
1975
, “
Advanced Supersonic Propulsion System Technology Study, Phase 2
,”
NASA
, Cincinnati, OH, Report No.
CR-134913
.https://ntrs.nasa.gov/citations/19760006012
13.
Allan
,
R.
,
1978
, “
Definition Study of a Variable Cycle Experimental Engine (VCEE) and Associated Test Program and Test Plan
,” NASA, Cincinnati, OH, Report No.
CR-159419
.https://ntrs.nasa.gov/citations/19790002871
14.
Willis
,
E.
, and
Welliver
,
A.
,
1976
, “
Variable-Cycle Engines for Supersonic Cruising Aircraft
,”
AIAA
Paper No. 76-759.10.2514/6.76-759
15.
Johnson
,
J.
,
1995
, “
Variable Cycle Engine Concepts
,”
AGARD PEP Symposium on “Advanced Aero-Engine Concepts and Controls
,” Seattle, WA, Sept. 25–29, Paper No. CP-572.
16.
Payzer
,
R.
,
1976
, “
Variable Cycle Engine Applications and Constraints
,”
AGARD Variable Geometry and Multicycle Engines
Eng. 13 p(SEE N 77-22112 13-07), Paris, France, Sept.
6
9
.
17.
Sullivan
,
T.
, and
Parker
,
D.
,
1979
, “
Design Study and Performance Analysis of a High-Speed Multistage Variable-Geometry Fan for a Variable Cycle Engine
,” NASA, Cincinnati, OH, Report No. CR-159545.
18.
Hoffman
,
S.
,
1980
, “
Bibliography of Supersonic Cruise Research (SCR) Program From 1977 to Mid-1980
,” NASA, Hampton, VA, Report No. RP-1063.
19.
Allan
,
R.
,
1979
, “
General Electric Company Variable Cycle Engine Technology Demonstrator Programs
,”
AIAA
Paper No. 79-1311.10.2514/6.79-1311
20.
Bartolotta
,
P.
,
2003
, “
High Speed Turbines
,”
AIAA
Paper No. 2003-6943.10.2514/6.2003-6943
21.
Vdoviak
,
J.
,
Knott
,
P.
, and
Ebacker
,
J.
,
1981
, “
Aerodynamic/Acoustic Performance of YJ101/Double Bypass VCE With Coannular Plug Nozzle
,” NASA, Cincinnati, OH, Report No. CR-159869.
22.
Kurzke
,
J.
,
2010
, “
The Mission Defines the Cycle: Turbojet, Turbofan and Variable Cycle Engines for High Speed Propulsion
,” NATO, Brussels, Belgium, Report No. RTO-EN-AVT-185.
23.
Chen
,
H.
,
Zhang
,
H.
,
Wang
,
Y.
, and
Zhen
,
Q.
,
2021
, “
Installation Characteristics of Variable Cycle Engine Based on Inlet Flow Matching
,”
Int. J. Turbo Jet-Engines
,
38
(
3
), pp.
319
329
.10.1515/tjj-2018-0031
24.
Hennig
,
C.
,
2017
,
Improvements in Thrust and Fuel Consumption for Future Jet Engines for Unmanned Aerial Vehicles (UAV) Using Variable Cycle Technology
, 1st ed.,
Luftfahrt, Dr. Hut
,
München, Germany
.
25.
Bond
,
D.
,
1991
, “
Risk, Cost Sway Airframe, Engine Choices for ATF
,”
Aviat. Week Space Technol.
,
134
(
1991
), pp.
20
21
.
26.
Powers
,
A.
,
Whitlow
,
J.
, and
Stitt
,
L.
,
1976
, “
Component Test Program for Variable-Cycle Engines
,”
Proceedings of the SCAR Conference, Part 1
, Lagkey Research Center, Hampton, VA, Nov.
9
12
.
27.
Westmoreland
,
J.
, and
Stern
,
A.
,
1978
, “
Variable Cycle Engine Technology Program Planning and Definition Study
,” NASA, Cincinnati, OH, Report No. CR-159539.
28.
Fishbach
,
L.
,
Stitt
,
L.
,
Stone
,
J.
, and
Whitlow
,
J.
,
1982
, “
NASA Research in Supersonic Propulsion—A Decade of Progress
,”
AIAA
Paper No. 82-1048.10.2514/6.82-1048
29.
Marshall
,
R.
,
Canuel
,
G.
, and
Sullivan
,
D.
,
1968
, “
Augmentation Systems for Turbofan Engines
,”
Combustion in Advanced Gas Turbine Systems
,
Elsevier
,
Cranfield, UK
, pp.
129
151
.
30.
Lowrie
,
B.
, and
Jordan
,
T.
,
1991
, “
Tandem Fan Engine
,” European Patent No. EP0426500A1.
31.
Rick
,
H.
,
2013
,
Gasturbinen und Flugantriebe
,
Springer
,
Berlin, Heidelberg, Germany
.
32.
Harbrard
,
A.
,
1990
, “
The Variable-Cycle Engine to Meet the Economic and Environmental Challenge of the Future Supersonic Transport Aircraft
,”
Rev. Sci. Snecma,
1, pp.
25
36
.
33.
Mercure
,
R.
,
1996
, “
Propulsion System Considerations for Future Supersonic Transports: A Global Perspective
,”
ASME
Paper No. 96-GT-245.10.1115/96-GT-245
34.
Nascimento
,
M.
, and
Pilidis
,
P.
,
1991
, “
The Selective Bleed Variable Cycle Engine
,”
ASME
Paper No. 91-GT-388.10.1115/91-GT-388
35.
Ulizar
,
I.
, and
Pilidis
,
P.
,
1993
, “
The Handling of a Variable Cycle Engine: The Selective Bleed Turbofan
,”
ASME
Paper No. 93-GT-384.10.1115/93-GT-384
36.
Ulizar
,
I.
, and
Pilidis
,
P.
,
1995
, “
Transition Control and Performance of the Selective Bleed Variable Cycle Turbofan
,”
ASME
Paper No. 95-GT-286.10.1115/95-GT-286
37.
Smith
,
H.
,
1997
, “
Advanced Short Take-Off Vertical Landing Combat Aircraft: Part 2—The Powerplant Installation
,”
Aircr. Eng. Aerosp. Technol.
,
69
(
1
), pp.
3
18
.10.1108/00022669710161603
38.
Ulizar
,
I.
, and
Pilidis
,
P.
,
1997
, “
Predicted Performance Characteristics of a Variable Cycle Turbofan
,”
Aeronaut. J. (1968)
,
101
(
1006
), pp.
263
268
.10.1017/S000192400006629X
39.
Wood
,
A.
, and
Pilidis
,
P.
,
1997
, “
A Variable Cycle Jet Engine for ASTOVL Aircraft
,”
Aircr. Eng. Aerosp. Technol.
,
69
(
6
), pp.
534
539
.10.1108/00022669710186002
40.
Dodds
,
M.
, and
Pilidis
,
P.
,
1999
, “
The Influence of a Variable Capacity Turbine in the Performance of a Variable Cycle Engine
,”
ASME
Paper No. 99-GT-373.10.1115/99-GT-373
41.
Yin
,
J.
,
Pilidis
,
P.
,
Ramsden
,
K.
, and
Probert
,
S.
,
2000
, “
Assessment of Variable-Cycle Propulsion Systems for ASTOVL
,”
Aircr. Eng. Aerosp. Technol.
,
72
(
6
), pp.
537
544
.10.1108/00022660010357756
42.
Grönstedt
,
U.
, and
Pilidis
,
P.
,
2000
, “
Control Optimization of the Transient Performance of the Selective Bleed Variable Cycle Engine During Mode Transition
,”
ASME
Paper No. 2000-GT-0148.10.1115/2000-GT-0148
43.
Massie
,
W.
,
2021
, “
GE Successfully Concludes Phase 1 Testing on Second XA100 Adaptive Cycle Engine
,” accessed Nov. 1, 2023, https://www.geaviation.com/press-release/military-engines/ge-successfully-concludes-phase-1-testing-second-xa100-adaptive
44.
Simmons
,
R.
,
2009
, “
Design and Control of a Variable Geometry Turbofan With and Independently Modulated Third Stream
,” Ph.D. thesis,
The Ohio State University
, Columbus, OH.
45.
Tirpak
,
J.
,
2021
, “
Pratt Testing XA101 Adaptive Engine, Has Two Offerings for F-35 Propulsion
,” accessed Nov. 1, 2023, https://www.airforcemag.com/pratt-testing-xa101-adaptive-engine-has-two-offerings-for-f-35-propulsion
46.
Hadley
,
G.
,
2022
, “
Air Force Looks Beyond AETP for Engines to Power NGAD Fighter
,” accessed Nov. 1, 2023, https://www.airforcemag.com/air-force-looks-beyond-aetp-for-engines-to-power-ngad-fighter
47.
Henrich
,
I.
,
2022
, “
A Powerful Engine for a Powerful Fighter
,” accessed Nov. 1, 2023, https://aeroreport.de/en/good-to-know/a-powerful-engine-for-a-powerful-fighter
48.
Kurzke
,
J.
, and
Halliwell
,
I.
,
2018
,
Propulsion and Power: An Exploration of Gas Turbine Performance Modeling
,
Springer
,
Cham, Switzerland
.
49.
Stephenson
,
D.
,
Davenport
,
W.
, and
Topping
,
R.
,
1974
, “
Altitude Evaluation of a Variable Cycle Turbofan Engine
,”
SAE
Paper No. 740806.10.4271/740806
50.
Bowers
,
D.
,
1985
, “
Chapter V: Throttle Dependent Forces
,”
Thrust and Drag: Its Prediction and Verification
,
W.
Kimzey
,
E. E.
Covert
,
E.
Rooney
,
G.
Richey
, and
C.
James
, eds.,
American Institute of Aeronautics and Astronautics
,
New York
.
51.
Meng
,
X.
,
Yang
,
X.
,
Chen
,
M.
, and
Zhu
,
Z.
,
2018
, “
High-Level Power Extraction From Adaptive Cycle Engine for Directed Energy Weapon
,”
AIAA
Paper No. 2018-4518.10.2514/6.2018-4518
52.
Ahlers
,
M.
, ed.,
2016
,
Aircraft Thermal Management: Systems Architectures
(PT Aerospace, No. 177),
SAE International
,
Warrendale, PA
.
53.
Clark
,
R. A.
,
Tai
,
J.
, and
Mavris
,
D.
,
2024
, “
Integrated Design of a Variable Cycle Engine and Aircraft Thermal Management System
,”
ASME J. Eng. Gas Turbines Power
,
146
(
8
), p.
081005
.10.1115/1.4063866
54.
Zenkner
,
S.
,
Becker
,
R.-G.
,
Trost
,
M.
, and
Voß
,
C.
,
2018
, “
Beiträge Zum Triebwerksentwurf Einer Agilen Und Hoch Gepfeilten Nurflügelkonfiguration
,” Deutscher Luft- und Raumfahrtkongress 2018, Friedrichshafen, Germany.10.25967/480208
55.
Chen
,
H.
,
Zheng
,
Q.
,
Gao
,
Y.
, and
Zhang
,
H.
,
2021
, “
Performance Seeking Control of Minimum Infrared Characteristic on Double Bypass Variable Cycle Engine
,”
Aerosp. Sci. Technol.
,
108
, p.
106359
.10.1016/j.ast.2020.106359
56.
Liu
,
B.
,
Wang
,
R.
, and
Yu
,
X.
,
2020
, “
On the Mode Transition of a Double Bypass Variable Cycle Compression System
,”
Aerosp. Sci. Technol.
,
98
, p.
105743
.10.1016/j.ast.2020.105743
57.
Clark
,
R.
,
Shi
,
M.
,
Gladin
,
J.
, and
Mavris
,
D.
,
2022
, “
Design and Analysis of an Aircraft Thermal Management System Linked to a Low Bypass Ratio Turbofan Engine
,”
ASME J. Eng. Gas Turbines Power
,
144
(
1
), p.
011019
.10.1115/1.4052031
58.
Davoudzadeh
,
F.
,
Buehrle
,
R.
,
Liu
,
N.
, and
Winslow
,
R.
,
2013
, “
Numerical Simulation of the RTA Combustion Rig
,” NASA, Toledo, OH, Report No. TM-2005-213899.
59.
McNelis
,
N.
, and
Bartolotta
,
P.
,
2005
, “
Revolutionary Turbine Accelerator (RTA) Demonstrator
,”
AIAA
Paper No. 2005-3250.10.2514/6.2005-3250
60.
Miyagi
,
H.
,
Kimura
,
H.
,
Cabe
,
J.
,
Powell
,
T.
, and
Yanagi
,
R.
,
1998
, “
Combined Cycle Engine Research in Japanese HYPR Program
,”
AIAA
Paper No. 98-3278.10.2514/6.98-3278
61.
Allan
,
R.
, and
Joy
,
W.
,
1977
, “
Advanced Supersonic Propulsion System Technology Study, Phases 3 and 4
,” NASA, Cincinnati, OH, Report No. CR-135236.
62.
Johnson
,
J.
,
Foster
,
T.
, and
Allan
,
R.
,
1977
, “
Variable Cycle Gas Turbine Engines
,” U.S. Patent No. 4,064,692.
63.
Johnson
,
J.
,
2011
, “
Adaptive Core Engine
,” U.S. Patent No. US20110167831A1.
64.
Ress
,
R.
,
Stratton
,
S.
, and
Starr
,
M.
,
2017
, “
Adaptive Fan System for a Variable Cycle Turbofan Engine
,” U.S. Patent No. US9624870B2.
65.
Baughman
,
J.
, and
Eheart
,
R.
,
2012
, “
Aft Fan Adaptive Cycle Engine
,” U.S. Patent No. US20120131902A1.
66.
Simmons
,
J.
,
1978
, “
Variable Cycle Engine With Split Fan Section
,” U.S. Patent No. US4068471A.
67.
Meng
,
X.
,
Zhu
,
Z.
, and
Chen
,
M.
,
2017
, “
Steady-State Performance Comparison of Two Different Adaptive Cycle Engine Configurations
,”
AIAA
Paper No. 2017-4791.10.2514/6.2017-4791
68.
Zheng
,
J.
,
Chen
,
M.
, and
Tang
,
H.
,
2017
, “
Matching Mechanism Analysis on an Adaptive Cycle Engine
,”
Chin. J. Aeronaut.
,
30
(
2
), pp.
706
718
.10.1016/j.cja.2017.02.006
69.
Xu
,
Y.
,
Chen
,
M.
, and
Tang
,
H.
,
2017
, “
Preliminary Design Analysis of Core Driven Fan Stage in Adaptive Cycle Engine
,”
AIAA
Paper No. 2017-4790.10.2514/6.2017-4790
70.
Cao
,
H.
,
Zhou
,
Z.
, and
Zhang
,
J.
,
2018
, “
Aerodynamic Design Schemes of the Inlet Guide Vane in a Core-Driven Fan Stage
,”
Adv. Mech. Eng.
,
10
(
1
).10.1177/1687814017747707
71.
Tu
,
B.
,
Zhang
,
L.
,
Wang
,
Q.
, and
Hu
,
J.
,
2018
, “
Investigation on Coanda Gap Variable-Camber Inlet Guide Vanes for Core Driven Fan Stage
,” 2018 15th International Bhurban Conference on Applied Sciences and Technology (
IBCAST
),
Islamabad, Pakistan
, Jan. 9–13, pp.
531
538
.10.1109/IBCAST.2018.8312276
72.
Thomas
,
W.
, and
Sprunger
,
E.
,
1977
, “
Two-Spool Variable Cycle Engine
,” U.S. Patent No.
US4043121A
.
73.
Johnson
,
J.
,
1995
, “
Spillage Drag Reducing FLADE Engine
,” U.S. Patent No. US5404713A.
74.
Giffin
,
R.
, and
Johnson
,
J.
,
2007
, “
FLADE Gas Turbine Engine With Counter-Rotatable Fans
,” U.S. Patent No. US7246484B2.
75.
Zhang
,
X.
,
Wang
,
Z.
, and
Ye
,
Y.
,
2018
, “
Optimization of Adaptive Cycle Engine Performance Based on Improved Particle Swarm Optimization
,”
AIAA
Paper No. 2018-4519.10.2514/6.2018-4519
76.
Zhou
,
H.
,
Gao
,
X.
,
Wang
,
Z.
, and
Zhang
,
W.
,
2019
, “
The Transient Performance of FLADE Variable Cycle Engine During Mode Transition
,”
The Proceedings of the 2018 Asia-Pacific International Symposium on Aerospace Technology (APISAT 2018)
, Vol. 459,
X.
Zhang
, ed.,
Springer
,
Singapore
, pp.
1685
1695
.
77.
Xiao-Bo
,
Z.
, and
Zhan-Xue
,
W.
,
2017
, “
Optimization of FLADE Variable Cycle Engine Performance Based on Improved Differential Evolution Algorithm
,”
ASME
Paper No. GTINDIA2017-4771.10.1115/GTINDIA2017-4771
78.
Yueliu
,
Z.
, and
Yuan
,
W.
,
2015
, “
Analysis of Aerodynamic Design Characteristics of FLADE Fan
,”
Procedia Eng.
,
99
, pp.
723
733
.10.1016/j.proeng.2014.12.594
79.
Zheng
,
J.
,
Tang
,
H.
,
Chen
,
M.
, and
Yin
,
F.
,
2018
, “
Equilibrium Running Principle Analysis on an Adaptive Cycle Engine
,”
Appl. Therm. Eng.
,
132
, pp.
393
409
.10.1016/j.applthermaleng.2017.12.102
80.
Lyu
,
Y.
,
Tang
,
H.
, and
Chen
,
M.
,
2016
, “
A Study on Combined Variable Geometries Regulation of Adaptive Cycle Engine During Throttling
,”
Appl. Sci.
,
6
(
12
), p.
374
.10.3390/app6120374
81.
Li
,
Y.
,
Chen
,
Y.
, and
Zhao
,
Q.
,
2018
, “
Steady State Calculation and Performance Analysis of Variable Cycle Engine
,” 2018 Ninth International Conference on Mechanical and Aerospace Engineering (
ICMAE
),
Budapest, Hungary
, July 10–13, pp. 3
52
356
.10.1109/ICMAE.2018.8467557
82.
Ren
,
C.
,
Chen
,
Y.
,
Jia
,
L.
, and
Zhou
,
C.
,
2018
, “
Variable Compression Component Interpolation Method for Turbine Engine
,” 2018 Ninth International Conference on Mechanical and Aerospace Engineering (
ICMAE
),
Budapest, Hungary
, July 10–13, pp.
162
167
.10.1109/ICMAE.2018.8467653
83.
Kopasakis
,
G.
,
Cheng
,
L.
, and
Connolly
,
J. W.
,
2015
, “
Stage-by-Stage and Parallel Flow Path Compressor Modeling for a Variable Cycle Engine
,”
AIAA
Paper No. 2015-4143.10.2514/6.2015-4143
84.
Cao
,
D.
, and
Bai
,
G.
,
2020
, “
A Study on Aeroengine Conceptual Design Considering Multi-Mission Performance Reliability
,”
Appl. Sci.
,
10
(
13
), p.
4668
.10.3390/app10134668
85.
Zheng
,
J.
,
Tang
,
H.
, and
Chen
,
M.
,
2019
, “
Optimal Matching Control Schedule Research on an Energy System
,”
Energy Procedia
,
158
, pp.
1685
1693
.10.1016/j.egypro.2019.01.393
86.
Meng
,
X.
,
Zhu
,
Z.
,
Chen
,
M.
, and
Xu
,
Y.
,
2021
, “
A Matching Problem Between the Front Fan and Aft Fan Stages in Adaptive Cycle Engines With Convertible Fan Systems
,”
Energies
,
14
(
4
), p.
840
.10.3390/en14040840
87.
Ma
,
C.
,
Hou
,
M.
,
Wang
,
H.
, and
Gao
,
J.
,
2021
, “
Matching Performance Prediction Between Core Driven Fan Stage and High Pressure Compressor
,”
Int. J. Turbo Jet-Engines
,
38
(
1
), pp.
101
114
.10.1515/tjj-2017-0058
88.
Przybylko
,
S.
, and
Rock
,
S.
,
1982
, “
Evaluation of a Multivariable Control Design on a Variable Cycle Engine Simulation
,”
AIAA
Paper No. 82-1077.10.2514/6.82-1077
89.
Zhang
,
J.
,
Dong
,
P.
,
Tang
,
H.
,
Zheng
,
J.
,
Wang
,
J.
, and
Chen
,
M.
,
2021
, “
General Design Method of Control Law for Adaptive Cycle Engine Mode Transition
,”
AIAA J.
, 60(1), pp.
1
15
.
90.
Xu
,
Y.
,
Tang
,
H.
, and
Chen
,
M.
,
2022
, “
Design Method of Optimal Control Schedule for the Adaptive Cycle Engine Steady-State Performance
,”
Chin. J. Aeronaut.
,
35
(
4
), pp.
148
164
.10.1016/j.cja.2021.08.025
91.
Qiu
,
X.
,
Chang
,
X.
,
Chen
,
J.
, and
Fan
,
B.
,
2022
, “
Research on the Analytical Redundancy Method for the Control System of Variable Cycle Engine
,”
Sustainability
,
14
(
10
), p.
5905
.10.3390/su14105905
92.
Corbett
,
M.
, and
Wolff
,
M.
,
2010
, “
Modeling Transient Effects of a Double Bypass Engine
,”
AIAA
Paper No. 2010-7090.10.2514/6.2010-7090
93.
Hao
,
W.
,
Wang
,
Z.
,
Zhang
,
X.
, and
Zhang
,
M.
,
2018
, “
A New Design Method for Mode Transition Control Law of Variable Cycle Engine
,”
AIAA
Paper No. 2018-4821.10.2514/6.2018-4821
94.
Chen
,
H.
,
Cai
,
C.
,
Luo
,
J.
, and
Zhang
,
H.
,
2022
, “
Flow Control of Double Bypass Variable Cycle Engine in Modal Transition
,”
Chin. J. Aeronaut.
,
35
(
10
), pp.
134
147
.10.1016/j.cja.2022.02.001
95.
Grönstedt
,
T.
,
2000
, “
Development of Methods for Analysis and Optimization of Complex Jet Engine Systems
,” Ph.D. thesis,
Chalmers University of Technology
, Göteborg, Sweden.
96.
Grönstedt
,
U. T. J.
, and
Pilidis
,
P.
,
2002
, “
Control Optimization of the Transient Performance of the Selective Bleed Variable Cycle Engine During Mode Transition
,”
ASME J. Eng. Gas Turbines Power
,
124
(
1
), pp.
75
81
.10.1115/1.1394965
97.
Moffitt
,
T.
, and
Schum
,
H.
,
1969
, “
Performance of a Single-Stage Turbine as Affected by Variable Stator Area
,”
AIAA
Paper No. 69-525.10.2514/6.69-525
98.
Razinsky
,
E.
, and
Kuziak
,
W.
,
1977
, “
Aerothermodynamic Performance of a Variable Nozzle Power Turbine Stage for an Automotive Gas Turbine
,”
ASME J. Eng. Power
,
99
(
4
), pp.
587
592
.10.1115/1.3446555
99.
Thenault
,
S.
, and
Hirschkron
,
R.
,
1967
, “
Variable Area Turbine Nozzle for Axial Flow Gas Turbine Engines
,” U.S. Patent No. US3314654A.
100.
French
,
M.
, and
Allen
,
C.
,
1981
, “
NASA VCE Test Bed Engine Aerodynamic Performance Characteristics and Test Results
,”
AIAA
Paper No. 81-1594.10.2514/6.81-1594
101.
Roy-Aikins
,
J.
,
1990
, “
Considerations for the Use of Variable Geometry in Gas Turbines
,”
ASME
Paper No. 90-GT-271.10.1115/90-GT-271
102.
Angelo
,
M.
,
1995
, “
Wide Speed Range Turboshaft Study
,” NASA, Lynn, MA, Aug. 1, Report No. NASA-CR-198380.
103.
Cox
,
J.
,
Hutchinson
,
D.
, and
Oswald
,
J.
,
1995
, “
The Westinghouse/Rolls-Royce WR-21 Gas Turbine Variable Area Power Turbine Design
,”
ASME
Paper No. 95-GT-054.10.1115/95-GT-054
104.
Ito
,
M.
,
2000
, “
International Collaboration in Super/Hyper-Sonic Propulsion System Research Project (HYPR)
,”
Aeronaut. J.
, 1040, pp.
445
452
.10.1017/S0001924000091934
105.
Bringhenti
,
C.
, and
Barbosa
,
J. R.
,
2004
, “
Methodology for Gas Turbine Performance Improvement Using Variable-Geometry Compressors and Turbines
,”
Proc. Inst. Mech. Eng., Part A: J. Power Energy
,
218
(
7
), pp.
541
549
.10.1243/0957650042456980
106.
Schipani
,
C.
,
2004
, “
Stator of a Variable-Geometry Axial Turbine for Aeronautical Applications
,” U.S. Patent No. US20030026693A1.
107.
Giaimo
,
J.
, and
Tirone
,
J.
,
2006
, “
Gear Train Variable Vane Synchronizing Mechanism for Inner Diameter Vane Shroud
,” U.S. Patent No. US7628579B2.
108.
Qiu
,
C.
,
Song
,
H.-F.
,
Wang
,
Y.-H.
, and
Huang
,
M.-H.
,
2009
, “
Performance Estimation of Variable Geometry Turbines
,”
Proc. Inst. Mech. Eng., Part A: J. Power Energy
,
223
(
4
), pp.
441
449
.10.1243/09576509JPE714
109.
Welch
,
G.
,
2010
, “
Assessment of Aerodynamic Challenges of a Variable-Speed Power Turbine for Large Civil Tilt-Rotor Application
,”
NASA
, Cleveland, OH, Report No. NASA/TM-2010-216758.
110.
Haglind
,
F.
,
2010
, “
Variable Geometry Gas Turbines for Improving the Part-Load Performance of Marine Combined Cycles—Gas Turbine Performance
,”
Energy
,
35
(
2
), pp.
562
570
.10.1016/j.energy.2009.10.026
111.
Cloarec
,
Y.
,
2011
, “
Turbomachine Variable-Pitch Stator Blade
,” U.S. Patent No. US7980815B2.
112.
Fang
,
X.
,
Yin
,
Z.
,
Liu
,
S.
,
Wang
,
P.
, and
Liu
,
Z.
,
2011
, “
Research of a New Design Method of Variable Area Nozzle Turbine for VCE: Harmonic Design Method
,”
ASME
Paper No. GT2011-45167.10.1115/GT2011-45167
113.
Gao
,
J.
,
Zheng
,
Q.
,
Yue
,
G.
, and
Wang
,
F.
,
2015
, “
Variable Geometry Design of a High Endwall Angle Power Turbine for Marine Gas Turbines
,”
ASME
Paper No. GT2015-43173.10.1115/GT2015-43173
114.
Niu
,
X.
,
Liang
,
C.
,
Jing
,
X.
,
Wei
,
J.
, and
Zhu
,
K.
,
2016
, “
Experimental Investigation of Variable Geometry Turbine Annular Cascade for Marine Gas Turbines
,”
ASME
Paper No. GT2016-56726.10.1115/GT2016-56726
115.
Chmielewski
,
M.
,
Fulara
,
S.
, and
Gieras
,
M.
,
2016
, “
Theoretical Studies of Variable Geometry—Hot Section of the Miniature Jet Engine
,”
J. KONES—Powertrain Transp.
,
23
(
2
), pp.
69
80
.10.5604/12314005.1213559
116.
Colantoni
,
S.
,
Tripoli
,
G.
,
Gorte
,
D. P.
,
Franchini
,
F.
,
Rossetti
,
F.
, and
Spagnolo
,
M.
,
2016
, “
Twin Shaft Gas Turbine Variable Area Turbine Nozzle: Analytical Modeling and Optimization of Kinematic Chain
,”
ASME
Paper No. GT2016-57702.10.1115/GT2016-57702
117.
Fulara
,
S.
,
Gieras
,
M.
, and
Chmielewski
,
M.
,
2017
, “
Miniature Gas Turbine With Variable Area Nozzle
,”
Arch. Combust.
,
37
(
2
), pp.
127
138
.https://www.researchgate.net/publication/326449703_Miniature_gas_turbine_with_Variable_Area_Nozzle
118.
Murugan
,
M.
,
Ghoshal
,
A.
, and
Bravo
,
L.
,
2018
, “
Adaptable Articulating Axial-Flow Compressor/Turbine Rotor Blade
,” U.S. Patent No. 11,073,160.
119.
Li
,
C.
,
Ouyang
,
W.
,
Guo
,
H.
,
Tang
,
D.
,
Liu
,
R.
, and
Deng
,
Z.
,
2019
, “
Concept and Preliminary Design of SMA Bimetallic Strip Smart Actuator for Space Adaptive Structures
,”
Mater. Res. Express
,
6
(
11
), p.
115710
.10.1088/2053-1591/ab5026
120.
Fulara
,
S.
,
Chmielewski
,
M.
, and
Gieras
,
M.
,
2020
, “
Variable Geometry in Miniature Gas Turbine for Improved Performance and Reduced Environmental Impact
,”
Energies
,
13
(
19
), p.
5230
.10.3390/en13195230
121.
Kozak
,
N.
,
Xu
,
F.
,
Rajanna
,
M. R.
,
Bravo
,
L.
,
Murugan
,
M.
,
Ghoshal
,
A.
,
Bazilevs
,
Y.
, and
Hsu
,
M.-C.
,
2020
, “
High-Fidelity Finite Element Modeling and Analysis of Adaptive Gas Turbine Stator-Rotor Flow Interaction at Off-Design Conditions
,”
J. Mech.
,
36
(
5
), pp.
595
606
.10.1017/jmech.2020.28
122.
Zhou
,
Q.
,
Yin
,
Z.
,
Zhang
,
H.
,
Wang
,
T.
,
Sun
,
W.
, and
Tan
,
C.
,
2020
, “
Performance Analysis and Optimized Control Strategy for a Three-Shaft, Recuperated Gas Turbine With Power Turbine Variable Area Nozzle
,”
Appl. Therm. Eng.
,
164
, p.
114353
.10.1016/j.applthermaleng.2019.114353
123.
Gao
,
J.
,
Liu
,
Y.
,
Zheng
,
Q.
, and
Liang
,
C.
,
2022
, “
Advances in Aerodynamic, Structural Design and Test Technology of Variable Geometry Turbines
,”
Proc. Inst. Mech. Eng., Part A: J. Power Energy
,
236
(
2
), pp.
364
390
.10.1177/09576509211035612
124.
Kyprianidis
,
K. G.
,
Grönstedt
,
T.
,
Ogaji
,
S. O. T.
,
Pilidis
,
P.
, and
Singh
,
R.
,
2011
, “
Assessment of Future Aero-Engine Designs With Intercooled and Intercooled Recuperated Cores
,”
ASME J. Eng. Gas Turbines Power
,
133
(
1
), p.
011701
.10.1115/1.4001982
125.
Boggia
,
S.
, and
Rued
,
K.
,
2005
, “
Intercooled Recuperated Gas Turbine Engine Concept
,”
AIAA
Paper No. 2005-4192.10.2514/6.2005-4192
126.
Mattingly
,
J. D.
,
1996
,
Elements of Gas Turbine Propulsion
(McGraw-Hill Series in Aeronautical and Aerospace Engineering),
McGraw-Hill
,
New York/London
.
127.
Bareis
,
B.
, and
Braig
,
W.
,
1995
, “
Performance Optimization of a Turboramjet Engine for Hypersonic Flight
,”
AGARD PEP Symposium on “Advanced Aero-Engine Concepts and Controls
,” Seattle, WA, Sept. 25–29, Paper No. CP-572.
128.
Davenport
,
W.
, and
Dixon
,
G.
,
1973
, “
The Garrett-Airesearch Variable-Cycle TFE731 Turbofan Engine
,”
SAE
Paper No. 730918.10.4271/730918
129.
Ainley
,
D.
, and
Mathienson
,
G.
,
1951
, “
An Examination of the Flow and Pressure Losses in Blade Rows of Axial Flow Turbines
,” Cranfield University, Cranfield, UK, Reports and Memoranda No. 2891.
130.
Thurman
,
D.
,
Poinsatte
,
P.
,
Giel
,
P.
, and
Lucci
,
B.
,
2018
, “
Heat Transfer Measurements on the Endwall of a Variable Speed Power Turbine Blade Cascade
,”
Army Research Laboratory
, Cleeland, OH, Report No. NASA/TM-2018-220033.
131.
Smith
,
S.
,
1965
, “
A Simple Correlation of Turbine Efficiency
,”
J. R. Aeronaut. Soc.
,
69
(
655
), pp.
467
470
.10.1017/S0001924000059108
132.
Gaetani
,
P.
,
2018
, “
Stator-Rotor Interaction in Axial Turbine: Flow Physics and Design Perspective
,”
Aircraft Technology
,
InTech
,
London, UK
.
133.
Yamada
,
K.
,
Funazaki
,
K.
,
Kikuchi
,
M.
, and
Sato
,
H.
,
2009
, “
Influences of Axial Gap Between Blade Rows on Secondary Flows and Aerodynamic Performance in a Turbine Stage
,”
ASME
Paper No. GT2009-59855.10.1115/GT2009-59855
134.
Foshage
,
G.
,
Young
,
R.
,
Xu
,
Y.
,
Wagner
,
E.
, and
Mahoney
,
D.
,
2013
, “
Development of High Temperature Electro-Magnetic Actuators (HTEMA) for Aircraft Propulsion Systems
,”
Air Force Research Laboratory
, 59th International Instrumentation Symposium and MFPT 2013 Joint Conference, Cleveland, OH, May 13, Report No. AFRL-RQ-WP-TP-2013-0207.
135.
Qiao
,
G.
,
Liu
,
G.
,
Shi
,
Z.
,
Wang
,
Y.
,
Ma
,
S.
, and
Lim
,
T.
,
2018
, “
A Review of Electromechanical Actuators for More/All Electric Aircraft Systems
,”
J. Mech. Eng. Sci.
,
232
(
22
), pp.
4128
4151
.10.1177/0954406217749869
136.
Higuchi
,
T.
,
Suzumori
,
K.
, and
Tadokoro
,
S.
, eds.,
2010
,
Next-Generation Actuators Leading Breakthroughs
,
Springer
, Tokyo, Japan.
137.
Padula
,
S.
,
Bigelow
,
G.
,
Noebe
,
R.
,
Gaydosh
,
D.
, and
Garg
,
A.
,
2006
, “
Challenges and Progress in the Development of High-Temperature Shape Memory Alloys Based on NiTiX Compositions for High-Force Actuator Applications
,”
NASA
, International Conference on Shape Memory and Superelastic Technologies, Report No. E-15744.
138.
Dapino
,
M. J.
,
Calkins
,
F. T.
, and
Flatau
,
A. B.
,
1998
, “
Identification and Analysis of Fundamental Issues in Terfenol-D Transducer Modeling
,”
Proc. SPIE
, San Diego, CA, July 27.10.1117/12.316892
139.
Rohr
,
C.
, and
Yang
,
Z.
,
2012
, “
A Numerical Study of Active Flow Control for Low Pressure Turbine Blades
,”
Proceedings of 4th International Symposium on Jet Propulsion and Power Engineering
, Xi’an, China, Sept. 10–12.
140.
Huang
,
J.
,
Corke
,
T.
, and
Thomas
,
F.
,
2006
, “
Plasma Actuators for Separation Control of Low Pressure Turbine Blades
,”
AIAA
Paper No. 2003-1027.10.2514/6.2003-1027
141.
Zhang
,
P.
,
Liu
,
A.
, and
Wang
,
J.
,
2009
, “
Aerodynamic Modification of NACA 0012 Airfoil by Trailing-Edge Plasma Gurney Flap
,”
AIAA J.
,
47
(
10
), pp.
2467
2474
.10.2514/1.43379
142.
Liu
,
A.
,
Zhang
,
P.
,
Yan
,
B.
,
Dai
,
C.
, and
Wang
,
J.
,
2011
, “
Flow Characteristics of Synthetic Jet Induced by Plasma Actuator
,”
AIAA J.
,
49
(
3
), pp.
544
553
.10.2514/1.J050563
143.
Valerioti
,
J.
, and
Corke
,
T.
,
2012
, “
Pressure Dependence of Dielectric Barrier Discharge Plasma Flow Actuators
,”
AIAA J.
,
50
(
7
), pp.
1490
1502
.10.2514/1.J051194
You do not currently have access to this content.