Natural convection from a buried pipe with a layer of backfill is numerically examined in this study. The objective of the present study is to investigate how a step change in the permeability of the backfill would affect the flow patterns and heat transfer results. Numerical calculations have covered a wide range of the governing parameters (i.e., and ) for various backfill thicknesses . The results suggest that a more permeable backfill can minimize the heat loss and confine the flow to a region close to the pipe.
Issue Section:
Technical Briefs
1.
Bau
, H. H.
, 1984, “Convective Heat Losses from a Pipe Buried in a Semi-Infinite Porous Medium
,” Int. J. Heat Mass Transfer
0017-9310, 27
, pp. 2047
–2056
.2.
Farouk
, B.
, and Shayer
, H.
, 1988, “Natural Convection around a Heated Cylinder in a Saturated Porous Medium
,” ASME J. Heat Transfer
0022-1481, 110
, pp. 642
–648
.3.
Christopher
, D. M.
, and Wang
, B.-X.
, 1993, “Non-Darcy Natural Convection around a Horizontal Cylinder Buried Near the Surface of a Fluid-Saturated Porous Medium
,” Int. J. Heat Mass Transfer
0017-9310, 36
, pp. 3663
–3669
.4.
Fernandez
, R. T.
, and Schrock
, V. E.
, 1982, “Natural Convection from Cylinders Buried in a Liquid-Saturated Porous Medium
,” in Proceedings of the International Heat Transfer Conference
, Munich, 2
, pp. 335
–340
.5.
Fand
, R. M.
, Steinberger
, T. E.
, and Cheng
, P.
, 1986, “Natural Convection Heat Transfer from a Horizontal Cylinder Embedded in a Porous Medium
,” Int. J. Heat Mass Transfer
0017-9310, 29
, pp. 119
–133
.6.
Nield
, D. A.
, and Bejan
, A.
, 1999, Convection in Porous Media
, 2nd ed., Springer-Verlag
, New York.7.
Hsiao
, S.-W.
, Cheng
, P.
, and Chen
, C.-K.
, 1992, “Non-Uniform Porosity and Thermal Dispersion Effects on Natural Convection about a Heated Horizontal Cylinder in an Enclosed Porous Medium
,” Int. J. Heat Mass Transfer
0017-9310, 35
, pp. 3407
–3418
.8.
Muralidhar
, K.
, Baunchalk
, R. A.
, and Kulacki
, F. A.
, 1986, “Natural Convection in a Horizontal Porous Annulus with a Step Distribution in Permeability
,” ASME J. Heat Transfer
0022-1481, 108
, pp. 889
–893
.9.
Ngo
, C. C.
, and Lai
, F. C.
, 2000, “Effective Permeability for Natural Convection in a Layered Porous Annulus
,” J. Thermophys. Heat Transfer
0887-8722, 14
, pp. 363
–367
.10.
McKibbin
, R.
, and O’Sullivan
, M. J.
, 1981, “Heat Transfer in a Layered Porous Medium Heated from Below
,” J. Fluid Mech.
0022-1120, 111
, pp. 141
–173
.11.
Rana
, R.
, Horne
, R. N.
, and Cheng
, P.
, 1979, “Natural Convection in a Multilayered Geothermal Reservoir
,” ASME J. Heat Transfer
0022-1481, 101
, pp. 411
–416
.12.
Pan
, C. P.
, and Lai
, F. C.
, 1996, “Re-examination of Natural Convection in a Horizontal Layered Porous Annulus
,” ASME J. Heat Transfer
0022-1481, 118
, pp. 990
–992
.13.
Thompson
, J. F.
, Warsi
, Z. U. A.
, and Mastin
, C. W.
, 1982, “Boundary-Fitted Coordinates Systems for Numerical Solution of Partial Differential Equations-A Review
,” J. Comput. Phys.
0021-9991, 47
, pp. 1
–108
.14.
Himasekhar
, K.
, and Bau
, H. H.
, 1988, “Thermal Convection around a Heat Source Embedded in a Box Containing a Saturated Porous Medium
,” ASME J. Heat Transfer
0022-1481, 110
, pp. 649
–654
.15.
Yost
, B. A.
, 1984, “The Analysis of Fluid Flow∕Solidification Problems in Arbitrarily Shaped Domains
,” Ph.D. dissertation, University of Delaware, Newark, DE.16.
Patankar
, S. V.
, 1980, Numerical Heat Transfer and Fluid Flow
, Hemisphere
, New York.Copyright © 2005
by American Society of Mechanical Engineers
You do not currently have access to this content.