Natural convection from a buried pipe with a layer of backfill is numerically examined in this study. The objective of the present study is to investigate how a step change in the permeability of the backfill would affect the flow patterns and heat transfer results. Numerical calculations have covered a wide range of the governing parameters (i.e., 10Ra1500 and 0.1K1K210) for various backfill thicknesses (0.5tri2). The results suggest that a more permeable backfill can minimize the heat loss and confine the flow to a region close to the pipe.

1.
Bau
,
H. H.
, 1984, “
Convective Heat Losses from a Pipe Buried in a Semi-Infinite Porous Medium
,”
Int. J. Heat Mass Transfer
0017-9310,
27
, pp.
2047
2056
.
2.
Farouk
,
B.
, and
Shayer
,
H.
, 1988, “
Natural Convection around a Heated Cylinder in a Saturated Porous Medium
,”
ASME J. Heat Transfer
0022-1481,
110
, pp.
642
648
.
3.
Christopher
,
D. M.
, and
Wang
,
B.-X.
, 1993, “
Non-Darcy Natural Convection around a Horizontal Cylinder Buried Near the Surface of a Fluid-Saturated Porous Medium
,”
Int. J. Heat Mass Transfer
0017-9310,
36
, pp.
3663
3669
.
4.
Fernandez
,
R. T.
, and
Schrock
,
V. E.
, 1982, “
Natural Convection from Cylinders Buried in a Liquid-Saturated Porous Medium
,” in
Proceedings of the International Heat Transfer Conference
, Munich,
2
, pp.
335
340
.
5.
Fand
,
R. M.
,
Steinberger
,
T. E.
, and
Cheng
,
P.
, 1986, “
Natural Convection Heat Transfer from a Horizontal Cylinder Embedded in a Porous Medium
,”
Int. J. Heat Mass Transfer
0017-9310,
29
, pp.
119
133
.
6.
Nield
,
D. A.
, and
Bejan
,
A.
, 1999,
Convection in Porous Media
, 2nd ed.,
Springer-Verlag
, New York.
7.
Hsiao
,
S.-W.
,
Cheng
,
P.
, and
Chen
,
C.-K.
, 1992, “
Non-Uniform Porosity and Thermal Dispersion Effects on Natural Convection about a Heated Horizontal Cylinder in an Enclosed Porous Medium
,”
Int. J. Heat Mass Transfer
0017-9310,
35
, pp.
3407
3418
.
8.
Muralidhar
,
K.
,
Baunchalk
,
R. A.
, and
Kulacki
,
F. A.
, 1986, “
Natural Convection in a Horizontal Porous Annulus with a Step Distribution in Permeability
,”
ASME J. Heat Transfer
0022-1481,
108
, pp.
889
893
.
9.
Ngo
,
C. C.
, and
Lai
,
F. C.
, 2000, “
Effective Permeability for Natural Convection in a Layered Porous Annulus
,”
J. Thermophys. Heat Transfer
0887-8722,
14
, pp.
363
367
.
10.
McKibbin
,
R.
, and
O’Sullivan
,
M. J.
, 1981, “
Heat Transfer in a Layered Porous Medium Heated from Below
,”
J. Fluid Mech.
0022-1120,
111
, pp.
141
173
.
11.
Rana
,
R.
,
Horne
,
R. N.
, and
Cheng
,
P.
, 1979, “
Natural Convection in a Multilayered Geothermal Reservoir
,”
ASME J. Heat Transfer
0022-1481,
101
, pp.
411
416
.
12.
Pan
,
C. P.
, and
Lai
,
F. C.
, 1996, “
Re-examination of Natural Convection in a Horizontal Layered Porous Annulus
,”
ASME J. Heat Transfer
0022-1481,
118
, pp.
990
992
.
13.
Thompson
,
J. F.
,
Warsi
,
Z. U. A.
, and
Mastin
,
C. W.
, 1982, “
Boundary-Fitted Coordinates Systems for Numerical Solution of Partial Differential Equations-A Review
,”
J. Comput. Phys.
0021-9991,
47
, pp.
1
108
.
14.
Himasekhar
,
K.
, and
Bau
,
H. H.
, 1988, “
Thermal Convection around a Heat Source Embedded in a Box Containing a Saturated Porous Medium
,”
ASME J. Heat Transfer
0022-1481,
110
, pp.
649
654
.
15.
Yost
,
B. A.
, 1984, “
The Analysis of Fluid Flow∕Solidification Problems in Arbitrarily Shaped Domains
,” Ph.D. dissertation, University of Delaware, Newark, DE.
16.
Patankar
,
S. V.
, 1980,
Numerical Heat Transfer and Fluid Flow
,
Hemisphere
, New York.
You do not currently have access to this content.