Air-film cooling has been widely employed to cool gas turbine hot components, such as combustor liners, combustor transition pieces, turbine vanes, and blades. Studies with flat surfaces show that significant enhancement of air-film cooling can be achieved by injecting water droplets with diameters of 510μm into the coolant airflow. The mist/air-film cooling on curved surfaces needs to be studied further. Numerical simulation is adopted to investigate the curvature effect on mist/air-film cooling, specifically the film cooling near the leading edge and on the curved surfaces. Water droplets are injected as dispersed phase into the coolant air and thus exchange mass, momentum, and energy with the airflow. Simulations are conducted for both 2D and 3D settings at low laboratory and high operating conditions. With a nominal blowing ratio of 1.33, air-only adiabatic film-cooling effectiveness on the curved surface is lower than on a flat surface. The concave (pressure) surface has a better cooling effectiveness than the convex (suction) surface, and the leading-edge film cooling has the lowest performance due to the main flow impinging against the coolant injection. By adding 2% (weight) mist, film-cooling effectiveness can be enhanced approximately 40% at the leading edge, 60% on the concave surface, and 30% on the convex surface. The leading edge film cooling can be significantly affected by changing of the incident angle due to startup or part-load operation. The film cooling coverage could switch from the suction side to the pressure side and leave the surface of the other part unprotected by the cooling film. Under real gas turbine operating conditions at high temperature, pressure, and velocity, mist-cooling enhancement could reach up to 20% and provide a wall cooling of approximately 180 K.

1.
Eriksen
,
V. L.
, and
Goldstein
,
R. J.
, 1974, “
Heat Transfer and Film Cooling Following Injection Through Inclined Tubes
,”
ASME J. Heat Transfer
0022-1481,
96
, pp.
239
245
.
2.
Goldstein
,
R. J.
,
Eckert
,
E. R. G.
, and
Burggraf
,
F.
, 1974, “
Effects of Hole Geometry and Density on Three-Dimensional Film Cooling
,”
Int. J. Heat Mass Transfer
0017-9310,
17
, pp.
595
607
.
3.
Jia
,
R.
,
Sunden
,
B.
,
Miron
,
P.
, and
Leger
,
B.
, 2005, “
A Numerical and Experimental Study of the Slot Film Cooling Jet With Various Angles
,”
ASME J. Turbomach.
0889-504X,
127
, pp.
635
645
.
4.
Kwak
,
J. S.
, and
Han
,
J. C.
, 2003, “
Heat Transfer Coefficients and Film-Cooling Effectiveness on a Gas Turbine Blade Tip
,”
ASME J. Heat Transfer
0022-1481,
125
, pp.
494
502
.
5.
Kwak
,
J. S.
, and
Han
,
J. C.
, 2003, “
Heat Transfer Coefficients and Film Cooling Effectiveness on the Squealer Tip of a Gas Turbine Blade
,”
ASME J. Turbomach.
0889-504X,
125
, pp.
648
657
.
6.
Wang
,
T.
,
Chintalapati
,
S.
,
Bunker
,
R. S.
, and
Lee
,
C. P.
, 2000, “
Jet Mixing in a Slot
,”
Exp. Therm. Fluid Sci.
0894-1777,
22
, pp.
1
17
.
7.
Bell
,
C. M.
,
Hamakawa1
,
H.
, and
Ligrani
,
P. M
., 2000, “
Film Cooling From Shaped Holes
,”
ASME J. Heat Transfer
0022-1481
122
, pp.
224
232
.
8.
Brittingham
,
R. A.
, and
Leylek
,
J. H.
, 2000, “
A Detailed Analysis of Film Cooling Physics: Part IV: Compound-Angle Injection With Shaped Holes
,”
ASME J. Turbomach.
0889-504X,
122
, pp.
133
145
.
9.
Colban
,
W.
,
Thole
,
K. A.
, and
Haendler
,
M.
, 2006, “
A Comparison of Cylindrical and Fan-Shaped Film Cooling on a Vane Endwall at Low and High Free Stream Turbulence Levels
,” ASME Paper No. 2006-90021.
10.
Suryanarayanan
,
A.
,
Mhetras
,
S. P.
,
Schobeiri
,
M. T.
, and
Han
,
J. C.
, 2006, “
Film-Cooling Effectiveness on a Rotating Blade Platform
,” ASME Paper No. 2006-90034.
11.
Nicolas
,
J.
and
Le Meur
,
A.
, 1974, “
Curvature Effects on Turbine Blade Cooling Film
,” ASME Paper No. 74-GT-156.
12.
Mayle
,
R. E.
,
Kopper
,
F. C.
,
Blair
,
M. F.
, and
Bailey
,
D. A.
, 1977, “
Effect of Streamline Curvature on Film Cooling
,”
ASME J. Eng. Power
0022-0825,
99
, pp.
77
82
.
13.
Ito
,
S.
,
Goldstein
,
R. J.
, and
Eckert
,
E. R. G.
, 1978, “
Film Cooling of a Gas Turbine Blade
,”
ASME J. Eng. Power
0022-0825,
100
, pp.
476
481
.
14.
Schwarz
,
S. G.
,
Goldstein
,
R. J.
, and
Eckert
,
E. R. G.
, 1991, “
Influence of Curvature on Film Cooling Performance
,”
ASME J. Turbomach.
0889-504X,
113
, pp.
472
478
.
15.
Jiang
,
H. W.
, and
Han
,
J.-C.
, 1996, “
Effect of Film Hole Row Location on Film Effectiveness on a Gas Turbine Blade
,”
ASME J. Heat Transfer
0022-1481,
118
, pp.
327
333
.
16.
Berhe
,
M. K.
, and
Patankar
,
S. V.
, 1999, “
Curvature Effects on Discrete-hole Film Cooling
,”
ASME J. Turbomach.
0889-504X,
121
, pp.
781
791
.
17.
Kim
,
K.-S.
,
Kim
,
Y. J.
, and
Kim
,
S.-M.
, 2006, “
Enhancement of Film Cooling Performance at the Leading Edge of Turbine Blade
,” ASME Paper No. 2006-90321.
18.
Li
,
X.
, and
Wang
,
T.
, 2006, “
Simulation of Film Cooling Enhancement with Mist Injection
,”
ASME J. Heat Transfer
0022-1481,
128
, pp.
509
519
.
19.
Li
,
X.
, and
Wang
,
T.
, 2007, “
Effects of Various Modeling Schemes on Mist Film Cooling
,”
ASME J. Heat Transfer
0022-1481,
129
, pp.
472
482
.
20.
Wang
,
T.
and
Li
,
X.
, 2006, “
Simulation of Mist Film Cooling at Gas Turbine Operating Conditions
,”
Proceedings of the ASME Turbo Expo 2006
,
Barcelona, Spain
, May 8–11.
21.
Li
,
X.
, and
Wang
,
T.
, 2006, “
Two-Phase Flow Simulation of Mist Film Cooling With Different Wall Heating Conditions
,”
Proceedings of the 13th International Heat Transfer Conference
,
Sydney, Australia
, August 13–18.
22.
Chaker
,
M.
,
Meher-Homji
,
C. B.
, and
Mee
,
M.
, 2004, “
Inlet Fogging of Gas Turbine Engines—Part I: Fog Droplet Thermodynamics, Heat Transfer and Practical Considerations
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
126
, pp.
545
558
.
23.
Petr
,
V.
, 2003, “
Analysis of Wet Compression in GT's
,” Proceedings of the International Conference on Energy and the Environment, Shanghai, China, Dec. 11–13, Vol.
1
, pp.
489
494
.
24.
Nirmalan
,
N. V.
,
Weaver
,
J. A.
, and
Hylton
,
L. D.
, 1998, “
An Experimental Study of Turbine Vane Heat Transfer With Water-Air Cooling
,”
ASME J. Turbomach.
0889-504X,
120
(
1
), pp.
50
62
.
25.
Guo
,
T.
,
Wang
,
T.
, and
Gaddis
,
J. L.
, 2000, “
Mist/Steam Cooling in a Heated Horizontal Tube, Part I: Experimental System, Part II: Results and Modeling
,”
ASME J. Turbomach.
0889-504X,
122
, pp.
360
374
.
26.
Guo
,
T.
,
Wang
,
T.
, and
Gaddis
,
J. L.
, 2000, “
Mist/Steam Cooling in a 180° Tube Bend
,”
ASME J. Heat Transfer
0022-1481,
122
, pp.
749
756
.
27.
Li
,
X.
,
Gaddis
,
J. L.
, and
Wang
,
T.
, 2003, “
Mist/Steam Cooling by a Row of Impinging Jets
,”
Int. J. Heat Mass Transfer
0017-9310,
46
, pp.
2279
2290
.
28.
Li
,
X.
,
Gaddis
,
J. L.
, and
Wang
,
T.
, 2003, “
Mist/Steam Heat Transfer With Jet Impingement Onto a Concave Surface
,”
ASME J. Heat Transfer
0022-1481,
125
, pp.
438
446
.
29.
Wang
,
M. J.
, and
Mayinger
,
F.
, 1995, “
Post-Dryout Dispersed Flow in Circular Bends
,”
Int. J. Multiphase Flow
0301-9322,
21
, pp.
437
454
.
30.
Aggarwal
,
S. K.
, and
Park
,
T. W.
, 1999, “
Dispersion of Evaporating Droplets in a Swirling Axisymmetric Jet
,”
AIAA J.
,
37
, pp.
1578
1587
. 0001-1452
31.
Chen
,
X.-Q.
, and
Pereira
,
J. C. F.
, 1995, “
Prediction of Evaporating Spray in Anisotropically Turbulent Gas Flow
,”
Numer. Heat Transfer, Part A
1040-7782,
27
, pp.
143
162
.
32.
Wolfshtein
,
M.
, 1969, “
The Velocity and Temperature Distribution of One-Dimensional Flow With Turbulence Augmentation and Pressure Gradient
,”
Int. J. Heat Mass Transfer
0017-9310,
12
, pp.
301
318
.
33.
Launder
,
B. E.
, and
Spalding
,
D. B.
, 1972,
Lectures in Mathematical Models of Turbulence
,
Academic
,
London, England
.
34.
Fluent Manual, Version 6.2.16, 2005, Fluent, Inc.
35.
Rayleigh
,
J. W. S.
, 1917, “
On the Dynamics of Revolving Fluids
,”
Proc. R. Soc. London, Ser. A
0950-1207,
93
, pp.
148
154
.
You do not currently have access to this content.