Heat transfer from a wedge to fluids at any Prandtl number can be predicted using the asymptotic model. In the asymptotic model, the dependent parameter Nux/Rex1/2 has two asymptotes. The first asymptote is Nux/Rex1/2Pr→0 that corresponds to very small value of the independent parameter Pr. The second asymptote is Nux/Rex1/2Pr→∞, that corresponds to very large value of the independent parameter Pr. The proposed model uses a concave downward asymptotic correlation method to develop a robust compact model. The solution has two general cases. The first case is β ≠ −0.198838. The second case is the special case of separated wedge flow (β = −0.198838) where the surface shear stress is zero, but the heat transfer rate is not zero. The reason for this division is Nux/Rex1/2 ∼ Pr1/3 for Pr ⪢ 1 in the first case while Nux/Rex1/2 ∼ Pr1/4 for Pr ⪢ 1 in the second case. In the first case, there are only two common examples of the wedge flow in practice. The first common example is the flow over a flat plate at zero incidence with constant external velocity, known as Blasius flow and corresponds to β = 0. The second common example is the two-dimensional stagnation flow, known as Hiemenez flow and corresponds to β = 1 (wedge half-angle 90 deg). Using the methods discussed by Churchill and Usagi (1972, “General Expression for the Correlation of Rates of Transfer and Other Phenomena,” AIChE J., 18(6), pp. 1121–1128), the fitting parameter in the proposed model for both isothermal wedges and uniform-flux wedges can be determined.

## References

1.
Pohlhausen
,
E.
,
1921
, “
Der Wärmeaustausch zwischen festen Körpern und Flüssigkeiten mit kleiner reibung und kleiner Wärmeleitung (The Exchange of Heat Between Solids and Liquids With Less Friction and Less Heat Conduction)
,”
Z. Angew. Math. Mech.
,
1
(
2
), pp.
115
121
.10.1002/zamm.19210010205
2.
Falkner
,
V. M.
, and
Skan
,
S. W.
,
1931
, “
Some Approximate Solutions of the Boundary Layer Equations
,”
Philos. Mag.
,
12
, pp.
865
896
.
3.
Fage
,
A.
, and
Falkner
,
V. M.
,
1931
,“ On the Relation Between Heat Transfer and Surface Friction for Laminar Flow,“ H. M. Stationary Office, London, Report No. 1408, pp. 172–201.
4.
Eckert
,
E. R. G.
,
1942
, “
Die Berechnung des Wärmeübergangs in der laminaren Grenzschicht umströmter Körper (The Calculation of Heat Transfer in the Laminar Boundary Layer Immersed Body)
,”
VDI-Forschungsh.
,
416
, pp.
1
44
.
5.
Lighthill
,
M. J.
,
1950
, “
Contributions to the Theory of Heat Transfer Through a Laminar Boundary Layer
,”
Proc. R. Soc. A
,
202
, pp.
359
377
.10.1098/rspa.1950.0106
6.
Spalding
,
D. B.
,
1958
, “
Heat Transfer From Surfaces of Non-Uniform Temperature
,”
J. Fluid Mech.
,
4
(
1
), pp.
22
32
.10.1017/S0022112058000288
7.
Spalding
,
D. B.
, and
Evans
,
H. L.
,
1961
, “
Mass Transfer Through Laminar Boundary Layers—Similarity Solutions to the b-Equation
,”
Int. J. Heat Mass Transfer
,
2
(
4
), pp.
314
341
.10.1016/0017-9310(61)90120-X
8.
Evans
,
H. L.
,
1961
, “
Mass Transfer Through Laminar Boundary Layers—3a. Similar Solutions of the b-Equation when B = 0 and σ ≥ 0.5
,”
Int. J. Heat Mass Transfer
,
3
(
1
), pp.
26
41
.10.1016/0017-9310(61)90003-5
9.
Evans
,
H. L.
,
1961
, “
Mass Transfer Through Laminar Boundary Layers—6. Methods of Evaluating the Wall Gradient $(b0'/B)$ for Similar Solutions; Some New Values for Zero Main-Stream Pressure Gradient
,”
Int. J. Heat Mass Transfer
,
3
(
4
), pp.
321
339
.10.1016/0017-9310(61)90047-3
10.
Evans
,
H. L.
,
1962
, “
Mass Transfer Through Laminar Boundary Layers—7. Further Similar Solutions to the b-Equation for the Case B = 0
,”
Int. J. Heat Mass Transfer
,
5
(
1–2
), pp.
35
57
.10.1016/0017-9310(62)90100-X
11.
Morgan
,
G. W.
,
Pipkin
,
A. C.
, and
Warner
,
V. H.
,
1958
, “
On Heat Transfer in Laminar Boundary Layer Flows of Liquids Having a Very Small Prandtl Number
,”
J. Aeronaut. Sci.
,
25
(3), pp.
173
180
.10.2514/8.7562
12.
,
E. W.
,
1963
, “
Heat Transfer in Laminar Flows of Incompressible Fluids With Pr → 0 and Pr → ∞
,” NASA, Washington, DC, Report No. NASA T ND 1527.
13.
Stewartson
,
K.
,
1964
,
The Theory of Laminar Boundary Layer in Compressible Fluids
,
Oxford University
,
Oxford
, UK.
14.
Narasimha
,
R.
, and
Vasantha
,
S.
,
1966
, “
Laminar Boundary Layer on a Flat Plate at High Prandtl Number
,”
Z. Angew. Math. Phys.
,
17
(
5
), pp.
585
592
.10.1007/BF01597240
15.
Goddard
,
J. D.
, and
Acrivos
,
A.
,
1966
, “
Asymptotic Expansions for Laminar Forced Convection Heat and Mass Transfer. Part 2. Boundary Layer Flows
,”
J. Fluid Mech.
,
24
(
2
), pp.
339
366
.10.1017/S0022112066000697
16.
Acrivos
,
A.
, and
Goddard
,
J. D.
,
1965
, “
Asymptotic Expansions for Laminar Forced Convection Heat and Mass Transfer. Part 1. Low Speed Flows
,”
J. Fluid Mech.
,
23
(
2
), pp.
273
291
.10.1017/S0022112065001350
17.
Narasimha
,
R.
, and
Afzal
,
N.
,
1971
, “
Laminar Boundary Layer on a Flat Plate at Low Prandtl Number
,”
Int. J. Heat Mass Transfer
,
14
(
2
), pp.
279
292
.10.1016/0017-9310(71)90094-9
18.
Chao
,
B. T.
, and
Cheema
,
L. S.
,
1971
, “
Forced Convection in Wedge Flow With Non-Isothermal Surfaces
,”
Int. J. Heat Mass Transfer
,
14
(
9
), pp.
1363
1375
.10.1016/0017-9310(71)90185-2
19.
Chao
,
B. T.
,
1972
, “
An Improved Lighthill's Analysis of Heat Transfer Through Boundary Layers
,”
Int. J. Heat Mass Transfer
,
15
(
5
), pp.
907
919
.10.1016/0017-9310(72)90230-X
20.
Bejan
,
A.
,
1984
,
Convection Heat Transfer
, 1st ed.,
Wiley
,
New York
.
21.
Chen
,
Y. M.
,
1985
, “
Heat Transfer of a Laminar Flow Passing a Wedge at Small Prandtl Number: A New Approach
,”
Int. J. Heat Mass Transfer
,
28
(
8
), pp.
1517
1523
.10.1016/0017-9310(85)90189-9
22.
Chen
,
Y. M.
,
1986
, “
A Higher-Order Asymptotic Solution for Heat Transfer of a Laminar Flow Passing a Wedge at Small Prandtl number
,”
Int. J. Heat Mass Transfer
,
29
(
3
), pp.
490
492
.10.1016/0017-9310(86)90218-8
23.
Schlichting
,
H.
,
1979
,
Boundary-Layer Theory
, 7th ed.,
McGraw-Hill
,
New York
.
24.
Lin
,
H. T.
, and
Lin
,
L. K.
,
1987
, “
Similarity Solutions for Laminar Forced Convection Heat Transfer From Wedges to Fluids of Any Prandtl Number
,”
Int. J. Heat Mass Transfer
,
30
(
6
), pp.
1111
1118
.10.1016/0017-9310(87)90041-X
25.
,
H. I.
,
1988
, “
On Approximate Formulas for Low Prandtl Number Heat Transfer in Laminar Wedge Flows
,”
Int. J. Heat Fluid Flow
,
9
(
2
), pp.
241
243
.10.1016/0142-727X(88)90078-1
26.
Cebeci
,
T.
,
2002
,
Convective Heat Transfer
,
Springer-Verlag
,
New York
.
27.
Cheng
,
W. T.
, and
Lin
,
H. T.
,
2002
, “
Non-Similarity Solution and Correlation of Transient Heat Transfer in Laminar Boundary Layer Flow over a Wedge
,”
Int. J. Eng. Sci.
,
40
(
5
), pp.
531
548
.10.1016/S0020-7225(01)00081-7
28.
Kuo
,
B.-L.
,
2005
, “
Heat Transfer Analysis for the Falkner–Skan Wedge Flow by the Differential Transformation Method
,”
Int. J. Heat Mass Transfer
,
48
(
23–24
), pp.
5036
5046
.10.1016/j.ijheatmasstransfer.2003.10.046
29.
Pantokratoras
,
A.
,
2006
, “
The Falkner-Skan Flow With Constant Wall Temperature and Variable Viscosity
,”
Int. J. Therm. Sci.
,
45
(
4
), pp.
378
389
.10.1016/j.ijthermalsci.2005.06.004
30.
Bachiri
,
M.
, and
Bouabdallah
,
A.
,
2012
, “
Analytical Study of the Convection Heat Transfer From an Isothermal Wedge Surface to Fluids
,”
ASME J. Heat Transfer
,
134
(
6
), p.
064502
.10.1115/1.4006030
31.
,
M. M.
,
2008
, “
Heat Transfer From a Rotating Disk to Fluids for a Wide Range of Prandtl Numbers Using the Asymptotic Model
,”
ASME J. Heat Transfer
,
130
(
1
), p.
014505
.10.1115/1.2780185
32.
Churchill
,
S. W.
, and
Usagi
,
R.
,
1972
, “
A General Expression for the Correlation of Rates of Transfer and Other Phenomena
,”
AIChE J.
,
18
(
6
), pp.
1121
1128
.10.1002/aic.690180606
33.
Churchill
,
S. W.
,
1988
,
Viscous Flows: The Practical Use of Theory
,
Butterworths
,
Boston, MA
.
34.
Kraus
,
A. D.
, and
Bar-Cohen
,
A.
,
1983
,
Thermal Analysis and Control of Electronic Equipment
,
Hemisphere
,
New York
.
35.
Yovanovich
,
M. M.
,
2003
, “
Asymptotes and Asymptotic Analysis for Development of Compact Models for Microelectronic Cooling
,” 19th Annual Semiconductor Thermal Measurement and Management Symposium and Exposition (SEMI-THERM), San Jose, CA, March 11–13.
36.
Kays
,
W. M.
, and
Crawford
,
M. E.
,
1993
,
Convective Heat and Mass Transfer
,
McGraw-Hill
,
New York
.
37.
Churchill
,
S. W.
, and
Ozoe
,
H.
,
1973
, “
Correlations for Laminar Forced Convection in Flow Over an Isothermal Flat Plate and in Developing and Fully Developed Flow in an Isothermal Tube
,”
ASME J. Heat Transfer
,
95
(
3
), pp.
416
419
.10.1115/1.3450078
38.
Incropera
,
F. P.
, and
DeWitt
,
D. P.
,
1990
,
Fundamentals of Heat and Mass Transfer
,
Wiley
,
New York
.
39.
Bejan
,
A.
,
1993
,
Heat Transfer
,
Wiley
,
New York
.