Abstract

This article provides the author's perspectives on the current molecular-level understanding of thermophysical properties and transport processes in liquids. After illustrating peculiarities of the thermophysical properties of some common liquids using experimental data on their specific heat, thermal conductivity, and viscosity, the article moves on with a summary of existing molecular pictures and theoretical approaches on liquids, followed with elaborations on different models developed for the specific heat, thermal conductivity, and viscosity. The review shows that current understanding of thermophysical properties of liquids is still poor and theoretical tools to study them are not well developed. The article provides personal views of the author on what is missing in current theories. Furthermore, it explains underlying mechanisms for some experimental observations and suggests potential directions of future research.

References

1.
Vincenti
,
W. G.
, and
Kruger
,
C. H.
,
1986
,
Introduction to Physical Gas Dynamics
,
Krieger
,
Malabar, FL
, pp.
325
348
.
2.
Chen
,
G.
,
2005
,
Nanoscale Energy Transport and Conversion: A Parallel Treatment of Electrons, Molecules, Phonons, and Photons
,
Oxford University Press
,
Oxford, UK
.
3.
Cahill
,
D. G.
,
Ford
,
W. K.
,
Goodson
,
K. E.
,
Mahan
,
G. D.
,
Majumdar
,
A.
,
Maris
,
H. J.
,
Merlin
,
R.
, and
Phillpot
,
S. R.
,
2003
, “
Nanoscale Thermal Transport
,”
J. Appl. Phys.
,
93
(
2
), pp.
793
818
.10.1063/1.1524305
4.
Cahill
,
D. G.
,
Braun
,
P. V.
,
Chen
,
G.
,
Clarke
,
D. R.
,
Fan
,
S. H.
,
Goodson
,
K. E.
,
Keblinski
,
P.
, et al.,
2014
, “
Nanoscale Thermal Transport. II. 2003-2012
,”
Appl. Phys. Rev.
,
1
(
1
), p.
011305
.10.1063/1.4832615
5.
Chen
,
G.
,
2021
, “
Non-Fourier Phonon Heat Conduction at the Microscale and Nanoscale
,”
Nat. Rev. Phys.
,
3
(
8
), pp.
555
569
.10.1038/s42254-021-00334-1
6.
Qian
,
X.
,
Zhou
,
J. W.
, and
Chen
,
G.
,
2021
, “
Phonon-Engineered Extreme Thermal Conductivity Materials
,”
Nat. Mater.
,
20
(
9
), pp.
1188
1202
.10.1038/s41563-021-00918-3
7.
Broido
,
D. A.
,
Malorny
,
M.
,
Birner
,
G.
,
Mingo
,
N.
, and
Stewart
,
D. A.
,
2007
, “
Intrinsic Lattice Thermal Conductivity of Semiconductors From First Principles
,”
Appl. Phys. Lett.
,
91
(
23
), p.
231922
.10.1063/1.2822891
8.
Peierls
,
R.
,
1929
, “
Zur Kinetischen Theorie der Warmeleitung in Kristallen
,”
Ann. Phys.
,
395
(
8
), pp.
1055
1101
.10.1002/andp.19293950803
9.
Enskog
,
D.
,
1922
, “Kinetische Theorie der Warmeleitung, Reibung und Selbstdiffusion in Gerwissen Verdichteten Gasen und Flussigkeiten.” Kungliga Svenska Vatenskapsakademiens Handlingar, Ny Föld,
63
(
4
), pp. 3–44.
10.
Einstein
,
A.
,
1905
, “
On the Movement of Small Particles Suspended in a Stationary Liquid Demanded by the Molecular Kinetic Theory of Heat
,”
Ann. Phys.
,
322
(
8
), pp.
549
560
.10.1002/andp.19053220806
11.
Hansen
,
J.-P.
, and
McDonald
,
I. R.
,
2013
,
Theory of Simple Liquids With Applications to Soft Matter
, 4th ed.,
Elsevier
,
Amsterdam, The Netherlands
.
12.
Frenkel
,
J.
,
1947
,
Kinetic Theory of Liquids
,
Oxford University Press
,
Oxford, UK
.
13.
Maxwell
,
J. C.
,
1867
, “
On the Dynamic Theory of Gases
,”
Philos. Trans.
,
157
(
5
), pp.
49
88
.https://www.jstor.org/stable/108968?seq=1#metadata_info_tab_contents
14.
Trachenko
,
K.
, and
Brazhkin
,
V. V.
,
2016
, “
Collective Modes and Thermodynamics of the Liquid State
,”
Rep. Prog. Phys.
,
79
(
1
), p.
016502
.10.1088/0034-4885/79/1/016502
15.
Boon
,
J. P.
, and
Yip
,
S.
,
1991
,
Molecular Hydrodynamics
,
Dover
,
New York
.
16.
Lemmon, E. W., McLinden, M. O., and Friend, D. G., “
Thermophysical Properties of Fluid Systems
,” NIST Chemistry WebBook, NIST Standard Reference Database Number 69, P. J. Linstrom and W. G. Mallard, eds., National Institute of Standard and Technology, Gaithersburg, MD, accessed Oct. 21, 2021, https://doi.org/10.18434/T4D303
17.
Vargaftik
,
N. B.
,
Filippov
,
L. P.
,
Tarzimanov
,
A. A.
, and
Totskii
,
E. E.
,
1994
,
Handbook of Thermal Conductivity of Liquids and Gases
,
CRC Press
,
Boca Raton, FL
.
18.
Yaws
,
C. L.
,
2009
,
Transport Properties of Chemicals and Hydrocarbons: Viscosity, Thermal Conductivity, and Diffusivity of C1 to C100 Organics and Ac to Zr Inorganics
, Andrew William, Norwich, NY, pp.
299
402
.
19.
Poling
,
B. E.
,
Prausnitz
,
J. M.
, and
O'Connell
,
J. P.
,
2001
,
The Properties of Gases and Liquids
, 5th ed.,
McGraw-Hill
,
New York
, pp.
10.42
10.56
.
20.
Baroncini
,
C.
,
Filippo
,
P. D.
,
Latini
,
G.
, and
Pacetti
,
M.
,
1981
, “
Organic Liquid Thermal Conductivity: A Prediction Method in the Reduced Temperature Range 0.3 to 0.8
,”
Int. J. Thermophys.
,
2
(
1
), pp.
21
38
.10.1007/BF00503572
21.
Baroncini
,
C.
,
Latini
,
G.
, and
Pierpaoli
,
P.
,
1984
, “
Thermal Conductivity of Organic Liquid Binary Mixtures: Measurements and Prediction Method
,”
Int. J. Thermophys.
,
5
(
4
), pp.
387
401
.10.1007/BF00500868
22.
Chen
,
H. S.
,
1980
, “
Glassy Metals
,”
Rep. Prog. Phys.
,
43
(
4
), pp.
353
432
.10.1088/0034-4885/43/4/001
23.
Green
,
H. S.
,
1960
, “
Structure of Liquids
,”
Encyclopedia of Physics: Structure of Liquids
,
S.
Flugge
, ed.,
Springer-Verlag
,
Berlin
, pp.
1
133
.
24.
Barker
,
J. A.
, and
Henderson
,
D.
,
1976
, “
What Is “Liquid”? Understanding the States of Matter
,”
Rev. Mod. Phys.
,
48
(
4
), pp.
587
671
.10.1103/RevModPhys.48.587
25.
Lennard-Jones
,
J. E.
, and
Devonshire
,
A. F.
,
1937
, “
Critical Phenomena in Gases—I
,”
Proc. R. Soc. London A
,
163
(
912
), pp.
53
70
.10.1098/rspa.1937.0210
26.
Lennard-Jones
,
J. E.
, and
Devonshire
,
A. F.
,
1938
, “
Critical Phenomena in Gases II. Vapour Pressures and Boiling Points
,”
Proc. R. Soc. London A
,
165
(
920
), pp.
1
11
.10.1098/rspa.1938.0039
27.
Lennard-Jones
,
J. E.
, and
Devonshire
,
A. F.
,
1939
, “
Critical and Co-Operative Phenomena III. A Theory of Melting and Structure of Liquids
,”
Proc. R. Soc. London A
,
169
(
938
), pp.
317
338
.10.1098/rspa.1939.0002
28.
Eyring
,
H.
, and
Hirschfelder
,
J.
,
1937
, “
The Theory of the Liquid States
,”
J. Phys. Chem.
,
41
(
2
), pp.
249
257
.10.1021/j150380a007
29.
Hirschfelder
,
J.
,
Stevenson
,
D.
, and
Eyring
,
H.
,
1937
, “
A Theory of Liquid Structure
,”
J. Chem. Phys.
,
5
(
11
), pp.
896
912
.10.1063/1.1749960
30.
Frank
,
H. S.
,
1945
, “
Free Volume and Entropy in Condensed Systems
,”
J. Chem. Phys.
,
13
(
11
), pp.
478
492
.10.1063/1.1723983
31.
Jhon
,
M. S.
, and
Eyring
,
H.
,
1971
, “
The Significant Structure Theory of Liquids
,”
Physical Chemistry—An Advanced Treatise: Liquid State
,
H.
Eyring
,
D.
Henderson
, and
W.
Jost
, eds.,
Academic Press
,
New York
, pp.
335
375
.
32.
Flory
,
P. J.
,
1953
,
Principles of Polymer Chemistry
,
Cornell University Press
,
Ithaca, NY
.
33.
Hildebrand
,
J. H.
,
1947
, “
The Entropy of Solution of Molecules of Different Size
,”
J. Chem. Phys.
,
15
(
5
), pp.
225
228
.10.1063/1.1746484
34.
Bogoliubov
,
N. N.
,
1946
, “
Kinetic Theory
,”
J. Phys. USSR
,
16
(
8
), pp.
691
702
.
35.
Born
,
M.
, and
Green
,
H. S.
,
1946
, “
A General Kinetic Theory of Liquids, I. The Molecular Distribution Functions
,”
Proc. R. Soc. London A: Math. Phys. Sci.
,
188
(
1012
), pp.
11
18
.10.1098/rspa.1946.0093
36.
Kirkwood
,
J. G.
,
1946
, “
The Statistical Mechanical Theory of Transport Processes
,”
J. Chem. Phys.
,
14
(
3
), pp.
180
201
.10.1063/1.1724117
37.
Yvon
,
J.
, and
Rocard
,
Y.
,
1935
,
La Theorie Statistique des Fluides et L'equation d'etat
,
Hermann & Cie
,
Paris, France
.
38.
Ornstein
,
L. S.
, and
Zernike
,
F.
,
1914
, “
Accidental Deviations of Density and Opalescence at the Critical Point of a Single Substance
,”
KNAW, Proc.
,
17
(
2
), pp.
793
806
.https://www.dwc.knaw.nl/DL/publications/PU00012727.pdf
39.
Percus
,
J. K.
, and
Yevick
,
G. J.
,
1958
, “
Analysis of Classical Statistical Mechanics by Means of Collective Coordinates
,”
Phys. Rev.
,
110
(
1
), pp.
1
12
.10.1103/PhysRev.110.1
40.
Langevin
,
P.
,
1908
, “
Sur la Theorie du Mouvement Brownien
,” C. R. Acad. Sci. (Paris),
146
(
3
), pp.
530
533
[
Lemons
,
D. S.
, and
Cythiel
,
A.
,
Am. J. Phys
.
65
(
11
),
1079
(
1997
).10.1119/1.18725
41.
Smoluchowski
,
M.
,
1906
, “
Zur Kinetischen Theorie der Bronschen Molekularbewegung und der Suspensionen
,”
Ann. Phys.
,
326
(
14
), pp.
756
780
.10.1002/andp.19063261405
42.
Chandrasekhar
,
S.
,
1943
, “
Stochastic Problems in Physics and Astronomy
,”
Rev. Mod. Phys.
,
15
(
1
), pp.
1
89
.10.1103/RevModPhys.15.1
43.
Landau
,
L. D.
, and
Lifshitz
,
E. M.
,
1959
,
Fluid Mechanics
,
Pergamon Press
,
London
.
44.
Hauge
,
E. H.
, and
Martin-Lof
,
A.
,
1973
, “
Fluctuating Hydrodynamics and Brownian Motion
,”
J. Stat. Phys.
,
7
(
3
), pp.
259
280
.10.1007/BF01030307
45.
Radhakrishan
,
R.
,
Ramakrishnan
,
N.
,
Eckmann
,
D. M.
, and
Ayyaswamy
,
P. S.
,
2020
, “
Nanoscale Fluid Dynamics
,”
21st Century Nanoscience—A Handbook
, 1st ed.,
K. D.
Sattler
, ed.,
Taylor & Francis, CRC Press
,
Boca Raton, FL
.
46.
Radhakrishnan
,
R.
,
Farokhirad
,
S.
,
Eckmann
,
D. M.
, and
Ayyaswamy
,
P. S.
,
2019
, “
Nanoparticle Transport Phenomena in Confined Flows
,”
Adv. Heat Transfer
,
51
, pp.
55
129
.10.1016/bs.aiht.2019.08.002
47.
Vitoshkin
,
H.
,
Yu
,
H.-Y.
,
Eckmann
,
D. M.
,
Ayyaswamy
,
P. S.
, and
Radhakrishnan
,
R.
,
2016
, “
Nanoparticle Stochastic Motion in the Inertial Regime and Hydrodynamic Interactions Close to a Cylindrical Wall
,”
Phys. Rev. Fluids
,
1
(
5
), p.
054104
.10.1103/PhysRevFluids.1.054104
48.
Yu
,
H.-Y.
,
Eckmann
,
D. M.
,
Ayyaswamy
,
P. S.
, and
Radhakrishnan
,
R.
,
2015
, “
Composite Generalized Langevin Equation for Brownian Motion in Different Hydrodynamic and Adhesion Regimes
,”
Phys. Rev. E
,
91
(
5
), p.
052303
.10.1103/PhysRevE.91.052303
49.
Ramakrishnan
,
N.
,
Wang
,
Y.
,
Eckmann
,
D. M.
,
Ayyaswamy
,
P. S.
, and
Radhakrishnan
,
R.
,
2017
, “
Motion of a Nano-Spheroid in a Cylindrical Vessel Flow: Brownian and Hydrodynamic Interactions
,”
J. Fluid Mech.
,
821
, pp.
117
152
.10.1017/jfm.2017.182
50.
Uma
,
B.
,
Swaminathan
,
T. N.
,
Radhakrishnan
,
R.
,
Eckmann
,
D. M.
, and
Ayyaswamy
,
P. S.
,
2011
, “
Nanoparticle Brownian Motion and Hydrodynamic Interactions in the Presence of Flow Fields
,”
Phys. Fluids
,
23
(
7
), p.
073602
.10.1063/1.3611026
51.
Radhakrishnan
,
R.
,
Yu
,
H.-Y.
,
Eckmann
,
D. M.
, and
Ayyaswamy
,
P. S.
,
2017
, “
Computational Models for Nanoscale Fluid Dynamics and Transport Inspired by Non-Equilibrium Thermodynamics
,”
ASME J. Heat Transfer-Trans. ASME
,
139
(
3
), p.
033001
.10.1115/1.4035006
52.
Uma
,
B.
,
Eckmann
,
D. M.
,
Ayyaswamy
,
P. S.
, and
Radhakrishnan
,
R.
,
2012
, “
A Hybrid Formalism Combining Fluctuating Hydrodynamics and Generalized Langevin Dynamics for the Simulation of Nanoparticle Thermal Motion in an Incompressible Fluid Medium
,”
Mol. Phys.
,
110
(
11–12
), pp.
1057
1067
.10.1080/00268976.2012.663510
53.
Born
,
M.
, and
Green
,
H. S.
,
1947
, “
A Kinetic Theory of Liquids
,”
Nature
,
159
(
4034
), pp.
251
254
.10.1038/159251a0
54.
Irving
,
J. H.
, and
Kirkwood
,
J. G.
,
1950
, “
The Statistical Mechanical Theory of Transport Processes. IV. The Equation of Hydrodynamics
,”
J. Chem. Phys.
,
18
(
6
), pp.
817
829
.10.1063/1.1747782
55.
Alder
,
B. J.
, and
Wainwright
,
T. E.
,
1970
, “
Decay of the Velocity Autocorrelation Function
,”
Phys. Rev. A
,
1
(
1
), pp.
18
21
.10.1103/PhysRevA.1.18
56.
Mori
,
H.
,
1965
, “
Transport, Collective Motion, and Brownian Motion
,”
Prog. Theor. Phys.
,
33
(
3
), pp.
423
455
.10.1143/PTP.33.423
57.
Widom
,
A.
,
1971
, “
Velocity Fluctuation of a Hard-Core Brownian Particle
,”
Phys. Rev. A
,
3
(
4
), pp.
1394
1396
.10.1103/PhysRevA.3.1394
58.
Car
,
R.
, and
Parrinello
,
M.
,
1985
, “
Unified Approach for Molecular Dynamics and Density-Functional Theory
,”
Phys. Rev. Lett.
,
55
(
22
), pp.
2471
2474
.10.1103/PhysRevLett.55.2471
59.
Green
,
M. S.
,
1952
, “
Markoff Random Processes and the Statistical Mechanics of Time-Dependent Phenomena
,”
J. Chem. Phys.
,
20
(
8
), pp.
1281
1295
.10.1063/1.1700722
60.
Kubo
,
R.
,
1957
, “
Statistical-Mechanical Theory of Irreversible Processes. I. General Theory and Simple Applications to Magnetic and Conduction Problems
,”
J. Phys. Soc. Jpn.
,
12
(
6
), pp.
570
586
.10.1143/JPSJ.12.570
61.
Hardy
,
R. J.
,
1963
, “
Energy-Flux Operator for a Lattice
,”
Phys. Rev.
,
132
(
1
), pp.
168
177
.10.1103/PhysRev.132.168
62.
Ungerer
,
P.
,
Nieto-Draghi
,
C.
,
Rousseau
,
B.
,
Ahunbay
,
G.
, and
Lachet
,
V.
,
2007
, “
Molecular Simulation of the Thermophyical Properties of Fluids: From Understanding Towards Quantitative Predictions
,”
J. Mol. Liq.
,
134
(
1–3
), pp.
71
89
.10.1016/j.molliq.2006.12.019
63.
Frenkel, J., 1926, “Thermal Movement in Solid and Liquid Bodies,”
Z. Physik
, 35, 652–669.10.1007/BF01379812
64.
Bolmatov
,
D.
,
Brazhkin
,
V. V.
, and
Trachenko
,
K.
,
2012
, “
The Phonon Theory of Liquid Thermodynamics
,”
Sci. Rep.
,
2
(
1
), p.
421
.10.1038/srep00421
65.
Crimsditch, M., Bhadra, R., and Torell, L. M., 1989, “Shear Waves Through the Glass-Liquid Transformation,”
Phys. Rev. Lett.
, 62, 2616–2619.10.1103/PhysRevLett.62.2616
66.
Giordano
,
V. M.
, and
Monaco
,
G.
,
2010
, “
Fingerprints of Order and Disorder on High-Frequency Dynamics of Liquids
,”
PNAS
,
107
(
51
), pp.
21985
21989
.10.1073/pnas.1006319107
67.
Prigogine
,
I.
,
Trappeniers
,
N.
, and
Mathot
,
V.
,
1953
, “
Statistical Thermodynamics of r-MERS and r-MER Solutions
,”
Discuss. Faraday Soc.
,
15
, pp.
93
107
.10.1039/df9531500093
68.
Seeley
,
G.
, and
Keyes
,
T.
,
1989
, “
Normal-Mode Analysis of Liquid-State Dynamics
,”
J. Chem. Phys.
,
91
(
9
), pp.
5581
5586
.10.1063/1.457664
69.
Buchner
,
M.
,
Ladanyi
,
B. M.
, and
Stratt
,
R. M.
,
1992
, “
The Short-Time Dynamics of Molecular Liquids. Instantaneous-Normal-Mode Theory
,”
J. Chem. Phys.
,
97
(
11
), pp.
8522
8535
.10.1063/1.463370
70.
Cho
,
M. H.
,
Fleming
,
G. R.
,
Saito
,
S.
,
Ohmine
,
I.
, and
Stratt
,
R. M.
,
1994
, “
Instantaneous Normal Mode Analysis of Liquid Water
,”
J. Chem. Phys.
,
100
(
9
), pp.
6672
6683
.10.1063/1.467027
71.
Gezelter
,
J. D.
,
Rabani
,
E.
, and
Berne
,
B. J.
,
1997
, “
Can Imaginary Instantaneous Normal Mode Frequencies Predict Barriers to Self-Diffusion
,”
J. Chem. Phys.
,
107
(
12
), pp.
4618
4627
.10.1063/1.474822
72.
Keyes
,
T.
,
Li
,
W.-X.
, and
Zurcher
,
U.
,
1998
, “
Comment on a Critique of the Instantaneous Normal Mode (INM) Approach to Diffusion [J. Chem. Phys. 107, 4618 (1997)]
,”
J. Chem. Phys.
,
109
(
11
), pp.
4693
4694
.10.1063/1.477080
73.
Lin
,
S.-T.
,
Blanco
,
M.
, and
Goddard
,
W. A.
, III
,
2003
, “
The Two-Phase Model for Calculating Thermodynamic Properties of Liquids From Molecular Dynamics: Validation for the Phase Diagram of Lennard-Jones Fluids
,”
J. Chem. Phys.
,
119
(
22
), pp.
11792
11805
.10.1063/1.1624057
74.
Lin
,
S.-T.
,
Maiti
,
P. K.
, and
Goddard
,
W. A.
, III
,
2010
, “
Two-Phase Thermodynamic Model for Efficient and Accurate Absolute Entropy of Water From Molecular Dynamics Simulations
,”
J. Phys. Chem. B
,
114
(
24
), pp.
8191
8198
.10.1021/jp103120q
75.
Iwashita
,
T.
,
Nicholson
,
D. M.
, and
Egami
,
T.
,
2013
, “
Elementary Excitation and Crossover Phenomenon in Liquids
,”
Phys. Rev. Lett.
,
110
(
20
), p.
205504
.10.1103/PhysRevLett.110.205504
76.
Stillinger
,
F. H.
,
1980
, “
Water Revisited
,”
Science
,
209
(
4455
), pp.
451
457
.10.1126/science.209.4455.451
77.
Ludwig
,
R.
,
2001
, “
Water: From Clusters to the Bulk
,”
Angew. Chem. Int. Ed.
,
40
(
10
), pp.
1808
1827
.10.1002/1521-3773(20010518)40:10<1808::AID-ANIE1808>3.0.CO;2-1
78.
Benson, S. W., and Siebert, E. D., 1992, “A Simple Two-Structure Model for Liquid Water,”
J. Am. Chem. Soc.
, 114, pp. 4269–4276.10.1021/ja00037a034
79.
Chaplin, M. F., 1999, “A Proposal for the Structuring of Water,”
Biophys. Chem.
, 83, pp. 211–221.10.1016/s0301-4622(99)00142-8
80.
Weinhold, F., 1998, “Quantum Cluster Equilibrium Theory of Liquids: General Theory and Computer Implementation,”
J. Chem. Phys.
, 109, pp. 367–372.10.1063/1.476573
81.
Frank
,
H. S.
, and
Wen
,
W.-Y.
, III
,
1957
, “
Ion-Solvent Interaction, Structural Aspects of Ion-Solvent Interaction in Aqueous Solutions: A Suggested Picture of Water Structure
,”
Discuss. Faraday Soc.
,
24
, pp.
133
140
.10.1039/df9572400133
82.
DeBye, P., and Huckel, E., 1923, “The Theory of Electrolyte. I. Freezing Point Depression and Related Phenomena (Zur Theorie der Elektrolyte. I. Gefrierpunktserniedrigung und Uermandte Erscheinungen),”
Phys. Z.
, 24, pp. 185–206 (translated by M. J. Braus).https://minds.wisconsin.edu/bitstream/handle/1793/79225/1923-debye-huckel-theory-2020-braus-translation-with-preface.pdf?sequence=3&isAllowed=y
83.
Chen, G., “Donnan Equilibrium Revisited: Coupling Between Ion Concentration, Osmotic Pressure, and Donnan Potential,“ (to appear in J. Micromechanics & Molecular Phys.).
84.
Eigen
,
M.
, and
Wicke
,
E.
,
1954
, “
The Thermodynamics of Electrolytes at Higher Concentrations
,”
J. Phys. Chem.
,
58
(
9
), pp.
702
714
.10.1021/j150519a007
85.
Brillouin
,
L.
,
1937
, “
On Thermal Agitation in Liquids
,”
J. Phys.
,
33
(
9
), pp.
54
55
.https://pubs.rsc.org/en/content/articlepdf/1937/tf/tf9373300054
86.
Wallace
,
D. C.
,
1998
, “
Liquid Dynamics Theory of High-Temperature Specific Heat
,”
Phys. Rev. E
,
57
(
2
), pp.
1717
1722
.10.1103/PhysRevE.57.1717
87.
Trachenko
,
K.
,
2008
, “
Heat Capacity of Liquids: An Approach From the Solid-Phase
,”
Phys. Rev.
,
78
, p.
104201
.10.1103/PhysRevB.78.104201
88.
Brazhkin, V. V., and Trachenko, K., 2014, “Collective Excitations and Thermodynamics of Disordered State: New Insights into an Old Problem,”
J. Phys. Chem. B
, 118, 11417–11427.10.1021/jp503647s
89.
Lilley, D., Jain, A., and Prasher, R., 2021 “A Simple Model for the Entropy of Melting of Monatonic Liquids,”
Appl. Phys. Lett.
, 118, p. 083902.10.1063/5.0041604
90.
Pascal
,
T. A.
,
Lin
,
S.-T.
, and
Goddard
,
W. A.
, III
,
2011
, “
Thermodynamics of Liquids: Standard Molar Entropies and Heat Capacity of Common Solvents From 2PT Molecular Dynamics
,”
Phys. Chem. Chem. Phys.
,
13
(
1
), pp.
169
181
.10.1039/C0CP01549K
91.
Flory
,
P. J.
,
Orwoll
,
R. A.
, and
Vrij
,
A.
,
1964
, “
Statistical Thermodynamics of Chain Molecule Liquids. I. An Equation of State for Normal Paraffin Hydrocarbons
,”
J. Am. Chem. Soc.
,
86
(
17
), pp.
3507
3514
.10.1021/ja01071a023
92.
McLaughlin
,
E.
,
1964
, “
The Thermal Conductivity of Liquids and Dense Gases
,”
Chem. Rev.
,
64
(
4
), pp.
389
428
.10.1021/cr60230a003
93.
Touloukian, Y. S., Liley, P. E., and Saxena, S. C., 1970, Thermal Conductivity—Nonmetallic Liquids and Gases (Thermophysical Properties of Matter, The TPRC Data Series, Vol. 3), Y. S. Touloukian and C. Y. Ho, eds., Purdue University, West Lafayette, IN.
94.
Chapman
,
S.
, and
Cowling
,
T. G.
,
1953
,
The Mathematical Theory of Non-Uniform Gases
,
Cambridge University Press
,
London
.
95.
Bridgman
,
P. W.
,
1923
, “
The Thermal Conductivity of Liquids Under Pressure
,”
Proc. Am. Acad. Arts Sci.
,
59
(
7
), pp.
141
169
.10.2307/20026073
96.
Sakiadis
,
B. C.
, and
Coates
,
J.
,
1955
, “
Studies of Thermal Conductivity of Liquids
,”
AIChE J.
,
1
(
3
), pp.
275
288
.10.1002/aic.690010302
97.
Sakiadis
,
B. C.
, and
Coates
,
J.
,
1956
, “
Prediction of Specific Heat or Organic Liquids
,”
AIChE J.
,
2
(
1
), pp.
88
93
.10.1002/aic.690020119
98.
Horrocks
,
J. K.
, and
McLaughlin
,
E.
,
1960
, “
Thermal Conductivity of Simple Molecules in the Condensed State
,”
Trans. Faraday Soc.
,
56
, pp.
206
212
.10.1039/tf9605600206
99.
Xi
,
Q.
,
Zhong
,
J. X.
,
He
,
J. X.
,
Xu
,
X. F.
,
Nakayama
,
T.
,
Wang
,
Y. Y.
,
Liu
,
J.
,
Zhou
,
J.
, and
Li
,
B. W.
,
2020
, “
A Ubiquitous Thermal Conductivity Formula for Liquids, Polymer Glass, and Amorphous Solids
,”
Chin. Phys. Lett.
,
37
(
10
), p.
104401
.10.1088/0256-307X/37/10/104401
100.
Longuet-Higgins
,
H. C.
, and
Pople
,
J. A.
,
1956
, “
Transport Properties of a Dense Fluid of Hard Spheres
,”
J. Chem. Phys.
,
25
(
5
), pp.
884
889
.10.1063/1.1743136
101.
Longuet-Higgins
,
H. C.
, and
Valleau
,
J. P.
,
1958
, “
Transport Coefficients of Dense Fluids of Molecules Interacting According to a Square Well Potential
,”
Mol. Phys.
,
1
(
3
), pp.
284
294
.10.1080/00268975800100331
102.
Davis
,
H. T.
,
Rice
,
S. A.
, and
Sengers
,
J. V.
,
1961
, “
On the Kinetic Theory of Dense Fluids. IX. The Fluid of Rigid Spheres With a Square-Well Attraction
,”
J. Chem. Phys.
,
35
(
6
), pp.
2210
2233
.10.1063/1.1732234
103.
Rice
,
S. A.
, and
Kirkwood
,
J. G.
,
1959
, “
On an Approximate Theory of Transport in Dense Media
,”
J. Chem. Phys.
,
31
(
4
), pp.
901
908
.10.1063/1.1730547
104.
Rice
,
S. A.
, and
Allnatt
,
A. R.
,
1961
, “
On the Kinetic Theory of Dense Fluids. VI. Singlet Distribution Function for Rigid Spheres With an Attractive Potential
,”
J. Chem. Phys.
,
34
(
6
), pp.
2144
2155
.10.1063/1.1731836
105.
Naghizadeh
,
J.
, and
Rice
,
S. A.
,
1962
, “
Kinetic Theory of Dense Fluids. X. Measurement and Interpretation of Self-Diffusion in Liquid Ar, Kr, Xe, and CH4
,”
J. Chem. Phys.
,
36
(
10
), pp.
2710
2720
.10.1063/1.1732357
106.
Ikenberry
,
L. D.
, and
Rice
,
S. A.
,
1963
, “
On the Kinetic Theory of Dense Fluids. XIV. Experimental and Theoretical Studies of Thermal Conductivity in Liquid Ar, Kr, Xe, and CH4
,”
J. Chem. Phys.
,
39
(
6
), pp.
1561
1671
.10.1063/1.1734480
107.
Eisenschitz
,
R.
,
1949
, “
The Steady Non-Uniform State for a Liquid
,”
Proc. Phys. Soc. A
,
62
(
1
), pp.
41
49
.10.1088/0370-1298/62/1/307
108.
Lin
,
S. H.
,
Eyring
,
H.
, and
Davis
,
W. J.
,
1964
, “
Thermal Conductivity of Liquids
,”
J. Phys. Chem.
,
68
(
10
), pp.
3017
3020
.10.1021/j100792a048
109.
Callaway
,
J.
,
1959
, “
Model for Lattice Thermal Conductivity at Low Temperatures
,”
Phys. Rev.
,
113
(
4
), pp.
1046
1051
.10.1103/PhysRev.113.1046
110.
Klemens
,
P. G.
,
1955
, “
The Scattering of Low-Frequency Lattice Waves by Static Imperfections
,”
Proc. Phys. Soc., Sec. A
,
68
(
12
), pp.
1113
1128
.10.1088/0370-1298/68/12/303
111.
Zhao
,
A. Z.
,
Wingert
,
M. C.
,
Chen
,
R. K.
, and
Garay
,
J. E.
,
2021
, “
Phonon Gas Model for Thermal Conductivity of Dense, Strongly Interacting Liquids
,”
J. Appl. Phys.
,
129
(
23
), p.
235101
.10.1063/5.0040734
112.
Trachenko
,
K.
,
Baggioli
,
M.
,
Behnia
,
K.
, and
Brazhkin
,
V. V.
,
2021
, “
Universal Lower Bounds on Energy and Momentum Diffusion in Liquids
,”
Phys. Rev. B
,
103
(
1
), p.
014311
.10.1103/PhysRevB.103.014311
113.
Owen
,
E. J.
, and
Thodos
,
G.
,
1957
, “
Thermal-Conductivity-Reduced-State Correlation for the Inert Gas
,”
AIChE J.
,
3
(
4
), pp.
454
461
.10.1002/aic.690030407
114.
Trachenko
,
K.
,
Monserrat
,
B.
,
Pickard
,
C. J.
, and
Brazhkin
,
V. V.
,
2020
, “
Speed of Sound From Fundamental Physical Constants
,”
Sci. Adv.
,
6
(
41
), p.
eabc9622
.10.1126/sciadv.abc8662
115.
Trachenko
,
K.
, and
Brazhkin
,
V. V.
,
2020
, “
Minimal Quantum Viscosity From Fundamental Physical Constants
,”
Sci. Adv.
,
6
(
17
), p.
eaba3747
.10.1126/sciadv.aba3747
116.
Zhang
,
M.
,
Lussetti
,
E.
,
de Souza
,
L. E. S.
, and
Müller-Plathe
,
F.
,
2005
, “
Thermal Conductivity of Molecular Liquids by Reverse Nonequilibrium Molecular Dynamics
,”
J. Phys. Chem.
,
109
(
31
), pp.
15060
15067
.10.1021/jp0512255
117.
McGaughey
,
A. J. H.
, and
Larkin
,
J. M.
,
2014
, “
Predicting Phonon Properties From Equilibrium Molecular Dynamics Simulations
,”
Annu. Rev. Heat Transfer
,
17
, pp.
49
87
.10.1615/AnnualRevHeatTransfer.2013006915
118.
Lv
,
W.
, and
Henry
,
A.
,
2016
, “
Direct Calculation of Modal Contributions to Thermal Conductivity Via Green-Kubo Modal Analysis
,”
New J. Phys.
,
18
(
1
), p.
013028
.10.1088/1367-2630/18/1/013028
119.
Wei
,
X. F.
,
Wang
,
Z.
,
Tian
,
Z. T.
, and
Luo
,
T. F.
,
2021
, “
Thermal Transport in Polymers: A Review
,”
ASME J. Heat Transfer-Trans. ASME
,
143
(
7
), p.
072101
.10.1115/1.4050557
120.
Matsubara
,
H.
,
Kikugawa
,
G.
,
Ishikiriyama
,
M.
,
Yamashita
,
S.
, and
Ohara
,
T.
,
2017
, “
Equivalence of the EMD- and NEMD-Based Decomposition of Thermal Conductivity Into Microscopic Building Blocks
,”
J. Chem. Phys.
,
147
(
11
), p.
114104
.10.1063/1.4990593
121.
Torii
,
D.
,
Nakano
,
T.
, and
Ohara
,
T.
,
2008
, “
Contribution of Inter- and Intramolecular Energy Transfers to Heat Conduction in Liquids
,”
J. Chem. Phys.
,
128
(
4
), p.
044504
.10.1063/1.2821963
122.
Surblys
,
D.
,
Matsubara
,
H.
,
Kikugawa
,
G.
, and
Ohara
,
T.
,
2019
, “
Application of Atomic Stress to Compute Heat Flux Via Molecular Dynamics for Systems With Many-Body Interactions
,”
Phys. Rev. E
,
99
(
5
), p.
05130(R)
.10.1103/PhysRevE.99.051301
123.
Ohara
,
T.
,
1999
, “
Contribution of Intermolecular Energy Transfer to Heat Conduction in a Simple Liquid
,”
J. Chem. Phys.
,
111
(
21
), pp.
9667
9672
.10.1063/1.480338
124.
Fleming
,
F. P.
,
Silva
,
L. A.
,
Lima
,
G. S. V.
,
Herzog
,
I.
,
Orlande
,
H. R. B.
,
Daridon
,
J.-L.
,
Pauly
,
J.
, and
Azevedo
,
L. F. A.
,
2018
, “
Thermal Conductivity of Heavy, Even-Carbon Number n-Alkanes (C22 to C32
),”
Fluid Phase Equilib.
,
477
, pp.
78
86
.10.1016/j.fluid.2018.08.016
125.
Huang
,
D. H.
,
Simon
,
S. L.
, and
McKenna
,
G. B.
,
2005
, “
Chain Length Dependence of the Thermodynamic Properties of Linear and Cyclic Alkanes and Polymers
,”
J. Chem. Phys.
,
122
(
8
), p.
084907
.10.1063/1.1852453
126.
Henry
,
A.
, and
Chen
,
G.
,
2008
, “
High Thermal Conductivity of Single Polyethylene Chains Using Molecular Dynamics Simulations
,”
Phys. Rev. Lett.
,
101
(
23
), p.
235502
.10.1103/PhysRevLett.101.235502
127.
Ohara
,
T.
,
Yuan
,
T. C.
,
Torii
,
D.
,
Kikugawa
,
G.
, and
Kosugi
,
N.
,
2011
, “
Heat Conduction in Chain Polymer Liquids: Molecular Dynamics Studies on the Contributions of Inter- and Intramolecular Energy Transfer
,”
J. Chem. Phys.
,
135
(
3
), p.
034507
.10.1063/1.3613648
128.
Matsubara
,
H.
,
Kikugawa
,
G.
,
Bessho
,
T.
,
Yamashita
,
S.
, and
Ohara
,
T.
,
2015
, “
Effects of Molecular Structure on Microscopic Heat Transport in Chain Polymer Liquids
,”
J. Chem. Phys.
,
142
(
16
), p.
164509
.10.1063/1.4919313
129.
Matsubara
,
H.
,
Kikugawa
,
G.
,
Bessho
,
T.
,
Yamashita
,
S.
, and
Ohara
,
T.
,
2017
, “
Understanding the Chain Length Dependence of Thermal Conductivity of Liquid Alcohols at 298 K on the Basis of Molecular-Scale Energy Transfer
,”
Fluid Phase Equilib.
,
441
, pp.
24
32
.10.1016/j.fluid.2016.12.019
130.
Matsubara
,
H.
,
Kikugawa
,
G.
,
Ishikiriyama
,
M.
,
Yamashita
,
S.
, and
Ohara
,
T.
,
2018
, “
Microscopic Picture of Heat Conduction in Liquid Ethylene Glycol by Molecular Dynamics Simulation: Difference From the Monohydric Case
,”
Int. J. Heat Mass Transfer
,
121
, pp.
1033
1038
.10.1016/j.ijheatmasstransfer.2018.01.060
131.
Yang
,
F.
,
Lu
,
H. X.
,
Liu
,
W. Q.
, and
Zhou
,
H.
,
2020
, “
Understanding the Contributions of Microscopic Heat Transfer to Thermal Conductivities of Liquid Aldehydes and Ketones by Molecular Dynamics Simulations
,”
J. Chem. Inf. Model.
,
60
(
6
), pp.
3022
3029
.10.1021/acs.jcim.0c00184
132.
Ohara
,
T.
,
1999
, “
Intermolecular Energy Transfer in Liquid Water and Its Contribution to Heat Conduction: A Molecular Dynamics Study
,”
J. Chem. Phys.
,
111
(
14
), pp.
6492
6500
.10.1063/1.480025
133.
Sirk
,
T. W.
,
Moore
,
S.
, and
Brown
,
E. F.
,
2013
, “
Characteristics of Thermal Conductivity in Classical Water Models
,”
J. Chem. Phys.
,
138
(
6
), p.
064505
.10.1063/1.4789961
134.
Palmer
,
G.
,
1948
, “
Thermal Conductivity of Liquids
,”
Ind. Eng. Chem.
,
40
(
1
), pp.
89
92
.10.1021/ie50457a026
135.
Wang
,
P. M.
, and
Anderko
,
A.
,
2008
, “
Modeling Thermal Conductivity of Concentrated and Mixed-Solvent Electrolyte Systems
,”
Ind. Eng. Chem. Res.
,
47
(
15
), pp.
5698
5709
.10.1021/ie071373c
136.
Hamer
,
W. J.
, and
Wu
,
Y.-C.
,
1972
, “
Osmotic Coefficients and Mean Activity Coefficients of Uni-Univalent Electrolytes in Water at 25 °C
,”
J. Phys. Chem. Ref. Data
,
1
(
4
), pp.
1047
1099
.10.1063/1.3253108
137.
Fortier
,
J. L.
,
Philip
,
P. R.
, and
Desnoyers
,
J. E.
,
1974
, “
Thermodynamic Properties of Alkali Halides. III. Volumes and Heat Capacities of Transfer From H2O to D2O at 25 °C
,”
J. Solution Chem.
,
3
(
7
), pp.
523
537
.10.1007/BF00648137
138.
Robertson
,
R. E.
,
Sugamor
,
S. E.
,
Tse
,
R.
, and
Wu
,
C.-Y.
,
1966
, “
The Solvent Isotope Effect and the Partial Molar Volume of Ions
,”
Can. J. Chem.
,
44
(
4
), pp.
487
494
.10.1139/v66-065
139.
Glueckauf
,
E.
,
1968
, “
Molar Volumes of Ions, Part 2
,”
Trans. Faraday Soc.
,
64
, pp.
2423
2432
.10.1039/tf9686402423
140.
Huang
,
B. T.
,
Muy
,
S.
,
Feng
,
S. T.
,
Katayama
,
Y.
,
Lu
,
Y.-C.
,
Chen
,
G.
, and
Shao-Horn
,
Y.
,
2018
, “
Non-Covalent Interactions in Electrochemical Reactions and Implications in Clean Energy Applications
,”
Phys. Chem. Chem. Phys.
,
20
(
23
), pp.
15680
15686
.10.1039/C8CP02512F
141.
Kontogeorgis
,
G. M.
,
Maribo-Mogensen
,
B.
, and
Thomsen
,
K.
,
2018
, “
The Debye-Huckel Theory and Its Importance in Modeling Electrolyte Solutions
,”
Fluid Phase Equilib.
,
462
, pp.
130
152
.10.1016/j.fluid.2018.01.004
142.
Liu
,
H. J.
,
Maginn
,
E.
,
Visser
,
A. E.
,
Bridges
,
N. J.
, and
Fox
,
E. B.
,
2012
, “
Thermal and Transport Properties of Six Ionic Liquids: An Experimental and Molecular Dynamics Study
,”
IEC Res.
,
51
(
21
), pp.
7242
7254
.10.1021/ie300222a
143.
Grosse
,
A. V.
,
1966
, “
Electrical and Thermal Conductivity of Metals Over Their Entire Liquid Range
,”
Rev. Hautes Temp. Refract.
,
3
(
2
), pp.
115
146
.
144.
Mott
,
N. F.
,
1934
, “
The Resistance of Liquid Metals
,”
Proc. R. Soc. A
,
146
(
9
), pp.
465
472
.
145.
Ziman
,
J. M.
,
1961
, “
A Theory of the Electrical Properties of Liquid Metals. I: The Monovalent Metals
,”
Philos. Mag.
,
6
(
68
), pp.
1013
1034
.10.1080/14786436108243361
146.
Sobolev
,
A. N.
, and
Mirzoev
,
A. A.
,
2008
, “
The Kubo-Greenwood Calculation of Conductivity of the Simple and Non-Simple Liquid Metals in a Wide Temperature Range
,”
J. Phys.: Conf. Ser.
,
98
(
6
), p.
062015
.10.1088/1742-6596/98/6/062015
147.
Yu
,
L. Y.
,
Hou
,
X. J.
,
Wu
,
K. J.
, and
He
,
C. H.
,
2021
, “
Measurements of the Thermal Conductivity of l-Menthol-Decanoic Acid Deep Eutectic Solvents in the Temperature Range From 283.15 to 363.15 K at Pressures Up to 15.1 MPa
,”
J. Chem. Eng. Data
,
66
(
5
), pp.
2061
2070
.10.1021/acs.jced.0c01099
148.
Bearman
,
R. J.
,
1958
, “
Statistical Mechanical Theory of Thermal Conductivity of Binary Liquid Solutions
,”
J. Chem. Phys.
,
29
(
6
), pp.
1278
1286
.10.1063/1.1744710
149.
Bearman
,
R. J.
,
Kirkwood
,
J. G.
, and
Fixman
,
M.
,
1958
, “
Statistical-Mechanical Theory of Transport Processes. X. The Heat of Transport in Binary Liquid Solutions
,”
Adv. Chem. Phys.
,
1
, pp.
1
13
.10.1002/0470106603
150.
Fang
,
Y. P.
,
Kikugawa
,
G.
,
Matsubara
,
H.
,
Bessho
,
T.
,
Yamashita
,
S.
, and
Ohara
,
T.
,
2016
, “
Molecular Thermal Energy Transfer in Binary Mixture of Simple Liquids
,”
Fluid Phase Equilib.
,
429
, pp.
293
300
.10.1016/j.fluid.2016.09.013
151.
Andrade
,
E. N. D. C.
,
1934
, “
A Theory of the Viscosity of Liquids—Part I
,”
London, Edingburg, Dublin Philos. Mag. J. Sci.
,
17
(
112
), pp.
497
511
.10.1080/14786443409462409
152.
Eyring
,
H.
,
1936
, “
Viscosity, Plasticity, and Diffusion as Examples of Absolute Reaction Rates
,”
J. Chem. Phys.
,
4
(
4
), pp.
283
291
.10.1063/1.1749836
153.
Doolittle
,
A. K.
,
1951
, “
Studies in Newtonian Flow. 2. The Dependence of the Viscosity of Liquids on Free-Space
,”
J. Appl. Phys.
,
22
(
12
), pp.
1471
1475
.10.1063/1.1699894
154.
Williams
,
M. L.
,
Landel
,
R. F.
, and
Ferry
,
J. D.
,
1955
, “
The Temperature Dependence of Relaxation Mechanisms in Amorphous Polymers and Other Glass-Forming Liquids
,”
J. Am. Chem. Soc.
,
77
(
14
), pp.
3701
3707
.10.1021/ja01619a008
155.
Cohen
,
M. H.
, and
Turnbull
,
D.
,
1959
, “
Molecular Transport in Liquids and Glasses
,”
J. Chem. Phys.
,
31
(
5
), pp.
1164
1169
.10.1063/1.1730566
156.
Poiseuille
,
J. L. M.
,
1847
, “
Sur le Mouvement des Liquides de Nature Differente dans les Tubes de Tres Petits Diametres
,”
Ann. Chim. Phys., Ser. 3
,
21
, pp.
76
110
.
157.
Jones
,
G.
, and
Dole
,
M.
,
1929
, “
The Viscosity of Aqueous Solutions of Strong Electrolytes With Special Reference to Barium Chloride
,”
J. Am. Chem. Soc.
,
51
(
10
), pp.
2950
2964
.10.1021/ja01385a012
158.
Jenkins
,
H. D. B.
, and
Marcus
,
Y.
,
1995
, “
Viscosity B-Coefficients of Ions in Solution
,”
Chem. Rev.
,
95
(
8
), pp.
2695
2724
.10.1021/cr00040a004
159.
Irving
,
J. B.
,
1977
, “
Viscosities of Binary Liquid Mixtures: The Effectiveness of Mixture Equations
,” National Engineering Laboratory, East Kilbride, Glasgow, UK, Report No. 631.
160.
Brillouin
,
L.
,
1922
, “
La Viscosite Des Liquides Et Son Interpretation Theorique
,”
J. Phys. Radium
,
3
(
9
), pp.
326
340
.10.1051/jphysrad:0192200309032600
161.
Cahill
,
D.
,
Watson
,
S.
, and
Pohl
,
R.
,
1992
, “
Lower Limit to the Thermal Conductivity of Disordered Crystals
,”
Phys. Rev. B
,
46
(
10
), pp.
6131
6140
.10.1103/PhysRevB.46.6131
162.
Allen
,
P. B.
,
Feldman
,
J. L.
,
Fabian
,
J.
, and
Wooten
,
F.
,
1999
, “
Diffusons, Locons and Propagons: Character of Atomic Vibrations in Amorphous Si
,”
Philos. Mag. B
,
79
(
11–12
), pp.
1715
1731
.10.1080/13642819908223054
163.
Simoncelli
,
M.
,
Marzari
,
N.
, and
Mauri
,
F.
,
2019
, “
Unified Theory of Thermal Transport in Crystals and Glasses
,”
Nat. Phys.
,
15
(
8
), pp.
809
813
.10.1038/s41567-019-0520-x
164.
Isaeva
,
L.
,
Barbalinardo
,
G.
,
Donadio
,
D.
, and
Baroni
,
S.
,
2019
, “
Modeling Heat Transport in Crystals and Glasses From a Unified Lattice-Dynamical Approach
,”
Nat. Commun.
,
10
(
1
), p.
3853
.10.1038/s41467-019-11572-4
165.
Lindsay
,
L.
,
Hua
,
C.
,
Ruan
,
X. L.
, and
Lee
,
S.
,
2018
, “
Survey of Ab Initio Phonon Thermal Transport
,”
Mater. Today Phys.
,
7
, pp.
106
120
.10.1016/j.mtphys.2018.11.008
166.
Espinoza-Guevara
,
R.
,
Caro-Corrales
,
J.
,
Ordorica-Falomir
,
C.
,
Zazueta-Morales
,
J.
,
Vega-Garcia
,
M.
, and
Cronin
,
K.
,
2010
, “
Thermophysical Properties of Pulp and Rind of Papaya Cv. Maradol
,”
Int. J. Food Prop.
,
13
(
1
), pp.
65
74
.10.1080/10942910802180166
167.
Wang
,
J. J.
,
Zheng
,
R. T.
,
Gao
,
J. W.
, and
Chen
,
G.
,
2012
, “
Heat Conduction Mechanisms in Nanofluids and Suspensions
,”
Nano Today
,
7
(
2
), pp.
124
136
.10.1016/j.nantod.2012.02.007
You do not currently have access to this content.