Abstract

Substrate roughness can greatly affect the evaporation of sessile droplets, thus determining the efficiency of applications, such as ink-jet printing and coating. Here, we conduct experiments on the evaporation of de-ionized water droplets on glass substrates with roughness in the range 0.1–0.2 μm to investigate its effect on the dynamics of the contact angle and radius, as well as the heat and mass transfer during evaporation. We discover a “stick-jump” phenomenon as part of a five-stage process that is determined by the evolution characteristics of the contact angle and radius and includes the volume expansion, first stick, second stick, jump and final stages. Moreover, we find that the evaporation mode of the droplets is not affected by the increase of substrate roughness, whereas the heat and mass transfer processes intensify with the increase of substrate roughness in the presence of nonuniform evaporation effects. Also, the pinning–depinning mechanism of the “stick-jump” phenomenon during evaporation is carefully analyzed in terms of the Gibbs free energy, thus establishing a relation among Gibbs and excess Gibbs free energies and substrate roughness, which predicts the evaporation dynamics of the droplet. We anticipate that this study unravels key aspects of the droplet evaporation mechanisms on rough substates toward optimizing and advancing relevant technology applications.

References

1.
Santangelo
,
P. E.
,
Corticelli
,
M. A.
, and
Tartarini
,
P.
,
2018
, “
Experimental and Numerical Analysis of Thermal Interaction Between Two Droplets in Spray Cooling of Heated Surfaces
,”
Heat Transfer Eng.
,
39
(
3
), pp.
217
228
.10.1080/01457632.2017.1295737
2.
Bigioni
,
T. P.
,
Lin
,
X.-M.
,
Nguyen
,
T. T.
,
Corwin
,
E. I.
,
Witten
,
T. A.
, and
Jaeger
,
H. M.
,
2006
, “
Kinetically Driven Self Assembly of Highly Ordered Nanoparticle Monolayers
,”
Nat. Mater.
,
5
(
4
), pp.
265
270
.10.1038/nmat1611
3.
Xia
,
D.
, and
Brueck
,
S. R. J.
,
2004
, “
A Facile Approach to Directed Assembly of Patterns of Nanoparticles Using Interference Lithography and Spin Coating
,”
Nano Lett.
,
4
(
7
), pp.
1295
1299
.10.1021/nl049355x
4.
Jing
,
J.
,
Reed
,
J.
,
Huang
,
J.
,
Hu
,
X.
,
Clarke
,
V.
,
Edington
,
J.
,
Housman
,
D.
, et al.,
1998
, “
Automated High Resolution Optical Mapping Using Arrayed, Fluid-Fixed DNA Molecules
,”
Proc. Natl. Acad. Sci. U. S. A.
,
95
(
14
), pp.
8046
8051
.10.1073/pnas.95.14.8046
5.
Birdi
,
K. S.
,
Vu
,
D. T.
, and
Winter
,
A.
,
1989
, “
A Study of the Evaporation Rates of Small Water Drops Placed on a Solid Surface
,”
J. Phys. Chem.
,
93
(
9
), pp.
3702
3703
.10.1021/j100346a065
6.
Deegan
,
R. D.
,
Bakajin
,
O.
,
Dupont
,
T. F.
,
Huber
,
G.
,
Nagel
,
S. R.
, and
Witten
,
T. A.
,
2000
, “
Contact Line Deposits in an Evaporating Drop
,”
Phys. Rev. E
,
62
(
1
), pp.
756
765
.10.1103/PhysRevE.62.756
7.
Popov
,
Y. O.
,
2005
, “
Evaporative Deposition Patterns: Spatial Dimensions of the Deposit
,”
Phys. Rev. E
,
71
(
3
), p.
036313
.10.1103/PhysRevE.71.036313
8.
Meric
,
R. A.
, and
Erbil
,
H. Y.
,
1998
, “
Evaporation of Sessile Drops on Solid Surfaces: Pseudospherical Cap Geometry
,”
Langmuir
,
14
(
7
), pp.
1915
1920
.10.1021/la970147c
9.
Rowan
,
S. M.
,
Newton
,
M. I.
, and
McHale
,
G.
,
1995
, “
Evaporation of Microdroplets and the Wetting of Solid Surfaces
,”
J. Phys. Chem.
,
99
(
35
), pp.
13268
13271
.10.1021/j100035a034
10.
Dash
,
S.
, and
Garimella
,
S. V.
,
2013
, “
Droplet Evaporation Dynamics on a Superhydrophobic Surface With Negligible Hysteresis
,”
Langmuir
,
29
(
34
), pp.
10785
10795
.10.1021/la402784c
11.
Dash
,
S.
, and
Garimella
,
S. V.
,
2014
, “
Droplet Evaporation on Heated Hydrophobic and Superhydrophobic Surfaces
,”
Phys. Rev. E
,
89
(
4
), p.
042402
.10.1103/PhysRevE.89.042402
12.
Picknett
,
R. G.
, and
Bexon
,
R.
,
1977
, “
The Evaporation of Sessile or Pendant Drops in Still Air
,”
J. Colloid Interface Sci.
,
61
(
2
), pp.
336
350
.10.1016/0021-9797(77)90396-4
13.
Deegan
,
R. D.
,
Bakajin
,
O.
,
Dupont
,
T. F.
,
Huber
,
G.
,
Nagel
,
S. R.
, and
Witten
,
T. A.
,
1997
, “
Capillary Flow as the Cause of Ring Stains From Dried Liquid Drops
,”
Nature
,
389
(
6653
), pp.
827
829
.10.1038/39827
14.
Erbil
,
H. Y.
,
2012
, “
Evaporation of Pure Liquid Sessile and Spherical Suspended Drops: A Review
,”
Adv. Colloid Interface Sci.
,
170
(
1–2
), pp.
67
86
.10.1016/j.cis.2011.12.006
15.
Chen
,
X.
,
Ma
,
R.
,
Li
,
J.
,
Hao
,
C.
,
Guo
,
W.
,
Luk
,
B. L.
,
Li
,
S. C.
,
Yao
,
S.
, and
Wang
,
Z.
,
2012
, “
Evaporation of Droplets on Superhydrophobic Surfaces: Surface Roughness and Small Droplet Size Effects
,”
Phys. Rev. Lett.
,
109
(
11
), p.
116101
.10.1103/PhysRevLett.109.116101
16.
Xu
,
W.
,
Leeladhar
,
R.
,
Kang
,
Y. T.
, and
Choi
,
C.-H.
,
2013
, “
Evaporation Kinetics of Sessile Water Droplets on Micropillared Superhydrophobic Surfaces
,”
Langmuir
,
29
(
20
), pp.
6032
6041
.10.1021/la400452e
17.
Zhang
,
J.
,
Leroy
,
F.
, and
Müller-Plathe
,
F.
,
2014
, “
Influence of Contact-Line Curvature on the Evaporation of Nanodroplets From Solid Substrates
,”
Phys. Rev. Lett.
,
113
(
4
), p.
046101
.10.1103/PhysRevLett.113.046101
18.
Nguyen
,
T. A. H.
,
Nguyen
,
A. V.
,
Hampton
,
M. A.
,
Xu
,
Z. P.
,
Huang
,
L.
, and
Rudolph
,
V.
,
2012
, “
Theoretical and Experimental Analysis of Droplet Evaporation on Solid Surfaces
,”
Chem. Eng. Sci.
,
69
(
1
), pp.
522
529
.10.1016/j.ces.2011.11.009
19.
David
,
S.
,
Sefiane
,
K.
, and
Tadrist
,
L.
,
2007
, “
Experimental Investigation of the Effect of Thermal Properties of the Substrate in the Wetting and Evaporation of Sessile Drops
,”
Colloids Surf., A
,
298
(
1–2
), pp.
108
114
.10.1016/j.colsurfa.2006.12.018
20.
Dunn
,
G. J.
,
Wilson
,
S. K.
,
Duffy
,
B. R.
,
David
,
S.
, and
Sefiane
,
K.
,
2009
, “
The Strong Influence of Substrate Conductivity on Droplet Evaporation
,”
J. Fluid Mech.
,
623
, pp.
329
351
.10.1017/S0022112008005004
21.
Jiang
,
X.
,
Tian
,
L.
,
Liu
,
X.
, and
Li
,
T.
,
2018
, “
Micro-Patterning of Titanium Surface and Its Effect on Droplet Evaporation
,”
Colloids Surf., A
,
545
, pp.
31
38
.10.1016/j.colsurfa.2018.02.006
22.
Lopes
,
M. C.
,
Bonaccurso
,
E.
,
Gambaryan-Roisman
,
T.
, and
Stephan
,
P.
,
2013
, “
Influence of the Substrate Thermal Properties on Sessile Droplet Evaporation: Effect of Transient Heat Transport
,”
Colloids Surf., A
,
432
, pp.
64
70
.10.1016/j.colsurfa.2013.04.017
23.
Zhang
,
J.
,
Müller-Plathe
,
F.
, and
Leroy
,
F.
,
2015
, “
Pinning of the Contact Line During Evaporation on Heterogeneous Surfaces: Slowdown or Temporary Immobilization? Insights From a Nanoscale Study
,”
Langmuir
,
31
(
27
), pp.
7544
7552
.10.1021/acs.langmuir.5b01097
24.
Maheshwari
,
S.
,
Van Der Hoef
,
M.
, and
Lohse
,
D.
,
2016
, “
Line Tension and Wettability of Nanodrops on Curved Surfaces
,”
Langmuir
,
32
(
1
), pp.
316
321
.10.1021/acs.langmuir.5b03925
25.
Xie
,
C.
,
Liu
,
G.
, and
Wang
,
M.
,
2016
, “
Evaporation Flux Distribution of Drops on a Hydrophilic or Hydrophobic Flat Surface by Molecular Simulations
,”
Langmuir
,
32
(
32
), pp.
8255
8264
.10.1021/acs.langmuir.6b01986
26.
Yu
,
J.-J.
,
Tang
,
R.
,
Li
,
Y.-R.
,
Zhang
,
L.
, and
Wu
,
C.-M.
,
2019
, “
Molecular Dynamics Simulation of Heat Transport Through Solid–Liquid Interface During Argon Droplet Evaporation on Heated Substrates
,”
Langmuir
,
35
(
6
), pp.
2164
2171
.10.1021/acs.langmuir.8b04047
27.
Zhang
,
J.
,
Huang
,
H.
, and
Lu
,
X.-Y.
,
2019
, “
Pinning–Depinning Mechanism of the Contact Line During Evaporation of Nanodroplets on Heated Heterogeneous "Surfaces: A Molecular Dynamics Simulation
,”
Langmuir
,
35
(
19
), pp.
6356
6366
.10.1021/acs.langmuir.9b00796
28.
Liu
,
B.
,
Li
,
Z.
,
Bi
,
L.
,
Theodorakis
,
P. E.
,
Liu
,
Y.
,
Song
,
J.
,
Chen
,
A.
,
Zhu
,
Z.
, and
Song
,
J.
,
2023
, “
Characteristics of HFE7100 Droplets Evaporation on Substrates With Different Thermal Conductivity
,”
Therm. Sci. Eng. Prog.
,
40
, p.
101771
.10.1016/j.tsep.2023.101771
29.
Erbil
,
H. Y.
,
McHale
,
G.
, and
Newton
,
M. I.
,
2002
, “
Drop Evaporation on Solid Surfaces: Constant Contact Angle Mode
,”
Langmuir
,
18
(
7
), pp.
2636
2641
.10.1021/la011470p
30.
Wang
,
F.-C.
, and
Wu
,
H.-A.
,
2013
, “
Pinning and Depinning Mechanism of the Contact Line During Evaporation of Nano-Droplets Sessile on Textured Surfaces
,”
Soft Matter
,
9
(
24
), p.
5703
.10.1039/c3sm50530h
31.
Wang
,
F.
, and
Wu
,
H.
,
2015
, “
Molecular Origin of Contact Line Stick-Slip Motion During Droplet Evaporation
,”
Sci. Rep.
,
5
(
1
), p.
17521
.10.1038/srep17521
32.
Zheng
,
L.
,
Rücker
,
M.
,
Bultreys
,
T.
,
Georgiadis
,
A.
,
Mooijer-van Den Heuvel
,
M. M.
,
Bresme
,
F.
,
Trusler
,
J. P. M.
, and
Müller
,
E. A.
,
2020
, “
Surrogate Models for Studying the Wettability of Nanoscale Natural Rough Surfaces Using Molecular Dynamics
,”
Energies
,
13
(
11
), p.
2770
.10.3390/en13112770
33.
Lin
,
T.-S.
,
Zeng
,
Y.-H.
,
Tsay
,
R.-Y.
, and
Lin
,
S.-Y.
,
2016
, “
Roughness-Induced Strong Pinning for Drops Evaporating From Polymeric Surfaces
,”
J. Taiwan Inst. Chem. Eng.
,
62
, pp.
54
59
.10.1016/j.jtice.2016.02.015
34.
Marmur
,
A.
,
2003
, “
Wetting on Hydrophobic Rough Surfaces: To Be Heterogeneous or Not To Be?
,”
Langmuir
,
19
(
20
), pp.
8343
8348
.10.1021/la0344682
35.
Bormashenko
,
E.
,
Musin
,
A.
,
Whyman
,
G.
, and
Zinigrad
,
M.
,
2012
, “
Wetting Transitions and Depinning of the Triple Line
,”
Langmuir
,
28
(
7
), pp.
3460
3464
.10.1021/la204424n
36.
Sun
,
Y.-J.
,
Huang
,
T.
,
Zhao
,
J.-F.
, and
Chen
,
Y.
,
2017
, “
Evaporation of a Nanodroplet on a Rough Substrate
,”
Front. Phys.
,
12
(
5
), p.
126401
.10.1007/s11467-016-0631-0
37.
Bai
,
L.
,
2018
, “
Molecular Dynamics Simulation of Wetting Behavior of n-Hexadecane Nanodroplets
,” M.S. thesis,
Dalian University of Technology
,
Dalian, China
.
38.
Bi
,
L.
,
Liu
,
B.
,
Zhu
,
Z.
,
Theodorakis
,
P. E.
,
Hu
,
H.
, and
Li
,
Z.
,
2023
, “
Molecular Dynamics Simulation of Wenzel-State Nanodroplets: Evaporation on Heated Substrates With Different Rough Structures
,”
Phys. Fluids
,
35
(
1
), p.
012015
.10.1063/5.0135583
39.
Semenov
,
S.
,
Trybala
,
A.
,
Rubio
,
R. G.
,
Kovalchuk
,
N.
,
Starov
,
V.
, and
Velarde
,
M. G.
,
2014
, “
Simultaneous Spreading and Evaporation: Recent Developments
,”
Adv. Colloid Interface Sci.
,
206
, pp.
382
398
.10.1016/j.cis.2013.08.006
40.
Nosonovsky
,
M.
, and
Bhushan
,
B.
,
2007
, “
Biomimetic Superhydrophobic Surfaces: Multiscale Approach
,”
Nano Lett.
,
7
(
9
), pp.
2633
2637
.10.1021/nl071023f
41.
Wenzel
,
R. N.
,
1936
, “
Resistance of Solid Surfaces to Wetting by Water
,”
Ind. Eng. Chem.
,
28
(
8
), pp.
988
994
.10.1021/ie50320a024
42.
Carbone
,
G.
, and
Mangialardi
,
L.
,
2005
, “
Hydrophobic Properties of a Wavy Rough Substrate
,”
Eur. Phys. J. E
,
16
(
1
), pp.
67
76
.10.1140/epje/e2005-00008-y
43.
Wang
,
Z.
,
Li
,
L.
, and
Yang
,
M.
,
2020
, “
Molecular Dynamics Simulation of the Wetting Characteristics of a Nanofluid Droplet on Rough Substrate
,”
J. Mol. Liq.
,
319
, p.
114204
.10.1016/j.molliq.2020.114204
44.
Blake
,
T. D.
, and
De
,
C. J.
,
2002
, “
The Influence of Solid-Liquid Interactions on Dynamic Wetting
,”
Adv. Colloid Interface Sci.
,
96
(
1–3
), pp.
21
36
.10.1016/S0001-8686(01)00073-2
45.
Putnam
,
S. A.
,
Briones
,
A. M.
,
Byrd
,
L. W.
,
Ervin
,
J. S.
,
Hanchak
,
M. S.
,
White
,
A.
, and
Jones
,
J. G.
,
2012
, “
Microdroplet Evaporation on Superheated Surfaces
,”
Int. J. Heat Mass Transfer
,
55
(
21–22
), pp.
5793
5807
.10.1016/j.ijheatmasstransfer.2012.05.076
46.
Tadmor
,
R.
,
Baksi
,
A.
,
Gulec
,
S.
,
Jadhav
,
S.
,
N'guessan
,
H. E.
,
Sen
,
K.
,
Somasi
,
V.
,
Tadmor
,
M.
,
Wasnik
,
P.
, and
Yadav
,
S.
,
2019
, “
Drops That Change Their Mind: Spontaneous Reversal From Spreading to Retraction
,”
Langmuir
,
35
(
48
), pp.
15734
15738
.10.1021/acs.langmuir.9b02592
47.
Blake
,
T. D.
,
2006
, “
The Physics of Moving Wetting Lines
,”
J. Colloid Interface Sci.
,
299
(
1
), pp.
1
13
.10.1016/j.jcis.2006.03.051
48.
Shanahan
,
M. E. R.
, and
Sefiane
,
K.
,
2009
, “
Kinetics of Triple Line Motion During Evaporation
,”
Contact Angle, Wettability and Adhesion
, Vol.
6
,
K. L.
Mittal
, ed.,
Brill Academic Publishers
, Washington, DC, pp.
19
32
.
49.
Bormashenko
,
E.
,
Musin
,
A.
, and
Zinigrad
,
M.
,
2011
, “
Evaporation of Droplets on Strongly and Weakly Pinning Surfaces and Dynamics of the Triple Line
,”
Colloids Surf., A
,
385
(
1–3
), pp.
235
240
.10.1016/j.colsurfa.2011.06.016
50.
Stephan
,
P. C.
, and
Busse
,
C. A.
,
1992
, “
Analysis of the Heat Transfer Coefficient of Grooved Heat Pipe Evaporator Walls
,”
Int. J. Heat Mass Transfer
,
35
(
2
), pp.
383
391
.10.1016/0017-9310(92)90276-X
51.
Günay
,
A. A.
,
Kim
,
M.-K.
,
Yan
,
X.
,
Miljkovic
,
N.
, and
Sett
,
S.
,
2021
, “
Droplet Evaporation Dynamics on Microstructured Biphilic, Hydrophobic, and Smooth Surfaces
,”
Exp. Fluids
,
62
(
7
), p.
153
.10.1007/s00348-021-03242-3
52.
Shanahan
,
M. E. R.
,
1995
, “
Simple Theory of ‘Stick-Slip’ Wetting Hysteresis
,”
Langmuir
,
11
(
3
), pp.
1041
1043
.10.1021/la00003a057
53.
Moffat
,
J. R.
,
Sefiane
,
K.
, and
Shanahan
,
M. E. R.
,
2009
, “
Effect of TiO2 Nanoparticles on Contact Line Stick−Slip Behavior of Volatile Drops
,”
J. Phys. Chem. B
,
113
(
26
), pp.
8860
8866
.10.1021/jp902062z
54.
Orejon
,
D.
,
Sefiane
,
K.
, and
Shanahan
,
M. E. R.
,
2011
, “
Stick–Slip of Evaporating Droplets: Substrate Hydrophobicity and Nanoparticle Concentration
,”
Langmuir
,
27
(
21
), pp.
12834
12843
.10.1021/la2026736
55.
Zhao
,
Y.
,
Lu
,
Q.
,
Li
,
M.
, and
Li
,
X.
,
2007
, “
Anisotropic Wetting Characteristics on Submicrometer-Scale Periodic Grooved Surface
,”
Langmuir
,
23
(
11
), pp.
6212
6217
.10.1021/la0702077
56.
Ding
,
Y.
,
Jia
,
L.
,
Yin
,
L.
,
Dang
,
C.
,
Liu
,
X.
, and
Xu
,
J.
,
2022
, “
Anisotropic Wetting Characteristics of Droplet on Micro-Grooved Surface
,”
Colloids Surf., A
,
633
, p.
127850
.10.1016/j.colsurfa.2021.127850
57.
Vaikuntanathan
,
V.
,
Kannan
,
R.
, and
Sivakumar
,
D.
,
2017
, “
An Experimental Study on the Equilibrium Shape of Water Drops Impacted on Groove-Textured Surfaces
,”
Exp. Therm. Fluid Sci.
,
87
, pp.
129
140
.10.1016/j.expthermflusci.2017.05.001
58.
Zhang
, J.
,
2006
, “The Calculating Formulae, and Experimental Methods in Error Propagation Analysis,”
IEEE Trans Reliab.
,
55
, pp.
169
181
.10.1109/TR.2006.874920
You do not currently have access to this content.