Abstract

The impacts of melting behavior on the thermal performance of triple tube thermal energy storage (TT-TES) and double tube thermal energy storage (DT-TES) systems employing cetyl alcohol and 3% v/v. MXene nano-enhanced PCM (NEPCM) are compared and numerically evaluated in this work. For both the DT-TES and TT-TES systems, the following were investigated in connection to melting time: system efficiency, discharged energy, heat transfer rate, exergy destruction, entropy generation number, exergetic efficiency, melting fraction, and melting temperature contours. In addition, the effect of Stefan, Rayleigh, and Nusselt numbers on Fourier numbers are compared for the DT-TES and TT-TES systems with MXene NEPCM. MXene-based nano-enhanced PCM melting in TT-TES displayed 6.53% more Stefan number than cetyl alcohol. DT-TES with pure cetyl alcohol phase change material (PCM) consumes 0.4% more energy at 7800 s than MXene NEPCM. Pure melting of MXene-based nano-enhanced PCM in a TT-TES had 4.16% higher storage exergy than cetyl alcohol. The entropy generation number of pure melting of MXene-based nano-enhanced PCM in TT-TES is 7.93% lower than that of cetyl alcohol. Pure melting of MXene-based nano-enhanced PCM in TT-TES reduces storage energy by 1.95% over cetyl alcohol. Pure cetyl alcohol has 76.99% optimal system efficiency at 5400 s melting time and MXene NEPCM 77.04% at 4800 s in DT-TES. The charging temperature for pure cetyl alcohol PCM in TT-TES is 0.7% lower than in DT-TES. Furthermore, pure melting of MXene-based nano-enhanced PCM in a TT-TES has 1.95% lower storage energy than cetyl alcohol. For a given volume of MXene-based nano-enhanced cetyl alcohol PCM, melting occurs more rapidly in a TT-TES system.

References

1.
Faraj
,
K.
,
Khaled
,
M.
,
Faraj
,
J.
,
Hachem
,
F.
, and
Castelain
,
C.
,
2020
, “
Phase Change Material Thermal Energy Storage Systems for Cooling Applications in Buildings: A Review
,”
Renewable Sustainable Energy Rev.
,
119
, p.
109579
.10.1016/j.rser.2019.109579
2.
Wu
,
S.
,
Yan
,
T.
,
Kuai
,
Z.
, and
Pan
,
W.
,
2020
, “
Thermal Conductivity Enhancement on Phase Change Materials for Thermal Energy Storage: A Review
,”
Energy Storage Mater.
,
25
, pp.
251
295
.10.1016/j.ensm.2019.10.010
3.
Tariq
,
H. S. L.
,
Ali
,
M.
,
Akram
,
M. A.
,
Janjua
,
M. M.
, and
Ahmadlouydarab
,
M.
,
2020
, “
Nanoparticles Enhanced Phase Change Materials (NePCMs)-A Recent Review
,”
Appl. Therm. Eng.
,
176
, p.
115305
.10.1016/j.applthermaleng.2020.115305
4.
Eisapour
,
M.
,
Eisapour
,
A. H.
,
Shafaghat
,
A. H.
,
Mohammed
,
H. I.
,
Talebizadehsardari
,
P.
, and
Chen
,
Z.
,
2022
, “
Solidification of a Nano-Enhanced Phase Change Material (NePCM) in a Double Elliptical Latent Heat Storage Unit With Wavy Inner Tubes
,”
Sol. Energy
,
241
, pp.
39
53
.10.1016/j.solener.2022.05.054
5.
Jaberi Khosroshahi
,
A.
, and
Hossainpour
,
S.
,
2022
, “
A Numerical Investigation on the Finned Storage Rotation Effect on the Phase Change Material Melting Process of Latent Heat Thermal Energy Storage System
,”
J. Energy Storage
,
55
, p.
105461
.10.1016/j.est.2022.105461
6.
Liang
,
H.
,
Niu
,
J.
, and
Gan
,
Y.
,
2020
, “
Performance Optimization for Shell-and-Tube PCM Thermal Energy Storage
,”
J. Energy Storage
,
30
, p.
101421
.10.1016/j.est.2020.101421
7.
Harikrishnan
,
S.
,
Magesh
,
S.
, and
Kalaiselvam
,
S.
,
2013
, “
Preparation and Thermal Energy Storage Behaviour of Stearic Acid–TiO2 Nanofluids as a Phase Change Material for Solar Heating Systems
,”
Thermochim. Acta
,
565
, pp.
137
145
.10.1016/j.tca.2013.05.001
8.
Awan
,
H. T. A.
,
Kumar
,
L.
,
Wong
,
W. P.
,
Walvekar
,
R.
, and
Khalid
,
M.
,
2023
, “
Recent Progress and Challenges in MXene-Based Phase Change Material for Solar and Thermal Energy Applications
,”
Energies
,
16
(
4
), p.
1977
.10.3390/en16041977
9.
Solangi
,
N. H.
,
Mubarak
,
N. M.
,
Karri
,
R. R.
,
Mazari
,
S. A.
,
Jatoi
,
A. S.
,
Koduru
,
J. R.
, and
Dehghani
,
M. H.
,
2022
, “
MXene-Based Phase Change Materials for Solar Thermal Energy Storage
,”
Energy Convers. Manage.
,
273
, p.
116432
.10.1016/j.enconman.2022.116432
10.
Darzi
,
A. R.
,
Farhadi
,
M.
, and
Sedighi
,
K.
,
2013
, “
Heat Transfer and Flow Characteristics of Al2O3–Water Nanofluid in a Double Tube Heat Exchanger
,”
Int. Commun. Heat Mass Transfer
,
47
, pp.
105
112
.10.1016/j.icheatmasstransfer.2013.06.003
11.
Ma
,
X.
,
Sheikholeslami
,
M.
,
Jafaryar
,
M.
,
Shafee
,
A.
,
Nguyen-Thoi
,
T.
, and
Li
,
Z.
,
2020
, “
Solidification Inside a Clean Energy Storage Unit Utilizing Phase Change Material With Copper Oxide Nanoparticles
,”
J. Cleaner Prod.
,
245
, p.
118888
.10.1016/j.jclepro.2019.118888
12.
Liu
,
Z.
,
Sun
,
X.
, and
Ma
,
C.
,
2005
, “
Experimental Investigations on the Characteristics of Melting Processes of Stearic Acid in an Annulus and Its Thermal Conductivity enhancement by Fins
,”
Energy Convers. Manage.
,
46
(
6
), pp.
959
969
.10.1016/j.enconman.2004.05.012
13.
Bonab
,
B. H.
,
2021
, “
Investigation and Optimization of PCM Melting With Nanoparticle in a Multi-Tube Thermal Energy Storage System
,”
Case Stud. Therm. Eng.
,
28
, p.
101643
.10.1016/j.csite.2021.101643
14.
Li
,
C.
,
Li
,
Q.
, and
Ge
,
R.
,
2023
, “
Comparative Investigation of Charging Performance in Shell and Tube Device Containing Molten Salt Based Phase Change Materials for Thermal Energy Storage
,”
Case Stud. Therm. Eng.
,
43
, p.
102804
.10.1016/j.csite.2023.102804
15.
Zaib
,
A.
,
Rehman
,
A.
,
Mazhar
,
Aziz
,
S.
,
Talha
,
T.
, and
Jung
,
D.
,
2023
, “
Heat Transfer Augmentation Using Duplex and Triplex Tube Phase Change Material (PCM) Heat Exchanger Configurations
,”
Energies
,
16
(
10
), p.
4037
.10.3390/en16104037
16.
Safari
,
V.
,
Abolghasemi
,
H.
,
Darvishvand
,
L.
, and
Kamkari
,
B.
,
2021
, “
Thermal Performance Investigation of Concentric and Eccentric Shell and Tube Heat Exchangers With Different Fin Configurations Containing Phase Change Material
,”
J. Energy Storage
,
37
, p.
102458
.10.1016/j.est.2021.102458
17.
Nicholls
,
R. A.
,
Moghimi
,
M. A.
, and
Griffiths
,
A. L.
,
2022
, “
Impact of Fin Type and Orientation on Performance of Phase Change Material-Based Double Pipe Thermal Energy Storage
,”
J. Energy Storage
,
50
, p.
104671
.10.1016/j.est.2022.104671
18.
Izadi
,
M.
,
Hajjar
,
A.
,
Alshehri
,
H. M.
,
Saleem
,
A.
, and
Galal
,
A. M.
,
2022
, “
Analysis of Applying Fin for Charging Process of Phase Change Material Inside H-Shaped Thermal Storage
,”
Int. Commun. Heat Mass Transfer
,
139
, p.
106421
.10.1016/j.icheatmasstransfer.2022.106421
19.
He
,
F.
,
Bo
,
R.
,
Hu
,
C.
,
Meng
,
X.
, and
Gao
,
W.
,
2023
, “
Employing Spiral Fins to Improve the Thermal Performance of Phase-Change Materials in Shell-Tube Latent Heat Storage Units
,”
Renewable Energy
,
203
, pp.
518
528
.10.1016/j.renene.2022.12.091
20.
Zhang
,
S.
,
Pu
,
L.
,
Xu
,
L.
,
Liu
,
R.
, and
Li
,
Y.
,
2020
, “
Melting Performance Analysis of Phase Change Materials in Different Finned Thermal Energy Storage
,”
Appl. Therm. Eng.
,
176
, p.
115425
.10.1016/j.applthermaleng.2020.115425
21.
Jin
,
W.
,
Huang
,
Q.
,
Huang
,
H.
,
Lin
,
Z.
,
Zhang
,
J.
,
Zhi
,
F.
,
Yang
,
G.
,
Chen
,
Z.
,
Wang
,
L.
, and
Jiang
,
L.
,
2023
, “
The Preparation of a Suspension of Microencapsulated Phase Change Material (MPCM) and Thermal Conductivity Enhanced by MXene for Thermal Energy Storage
,”
J. Energy Storage
,
73
, p.
108868
.10.1016/j.est.2023.108868
22.
Mekrisuh
,
K. U.
,
Singh
,
D.
, and
Udayraj
,
2020
, “
Performance Analysis of a Vertically Oriented Concentric-Tube PCM Based Thermal Energy Storage System: Parametric Study and Correlation Development
,”
Renewable Energy
,
149
, pp.
902
916
.10.1016/j.renene.2019.10.074
23.
Seddegh
,
S.
,
Wang
,
X.
, and
Henderson
,
A. D.
,
2016
, “
A Comparative Study of Thermal Behaviour of a Horizontal and Vertical Shell-and-Tube Energy Storage Using Phase Change Materials
,”
Appl. Therm. Eng.
,
93
, pp.
348
358
.10.1016/j.applthermaleng.2015.09.107
24.
Wang
,
Y.
,
Wang
,
L.
,
Xie
,
N.
,
Lin
,
X.
, and
Chen
,
H.
,
2016
, “
Experimental Study on the Melting and Solidification Behavior of Erythritol in a Vertical Shell-and-Tube Latent Heat Thermal Storage Unit
,”
Int. J. Heat Mass Transfer
,
99
, pp.
770
781
.10.1016/j.ijheatmasstransfer.2016.03.125
25.
Hosseini
,
M. J.
,
Ranjbar
,
A. A.
,
Sedighi
,
K.
, and
Rahimi
,
M.
,
2012
, “
A Combined Experimental and Computational Study on the Melting Behavior of a Medium Temperature Phase Change Storage Material Inside Shell and Tube Heat Exchanger
,”
Int. Commun. Heat Mass Transfer
,
39
(
9
), pp.
1416
1424
.10.1016/j.icheatmasstransfer.2012.07.028
26.
Kaygusuz
,
K.
, and
Sari
,
A.
,
2005
, “
Thermal Energy Storage System Using a Technical Grade Paraffin Wax as Latent Heat Energy Storage Material
,”
Energy Sources
,
27
(
16
), pp.
1535
1546
.10.1080/009083190914015
27.
Nie
,
C.
,
Deng
,
S.
, and
Liu
,
J.
,
2020
, “
Effects of Fins Arrangement and Parameters on the Consecutive Melting and Solidification of PCM in a Latent Heat Storage Unit
,”
J. Energy Storage
,
29
, p.
101319
.10.1016/j.est.2020.101319
28.
Alizadeh
,
M.
,
Shahavi
,
M. H.
, and
Ganji
,
D. D.
,
2022
, “
Performance Enhancement of Nano PCM Solidification in a Hexagonal Storage Unit With Innovative Fin Shapes Dealing With Time-Dependent Boundary Conditions
,”
Energy Rep.
,
8
, pp.
8200
8214
.10.1016/j.egyr.2022.06.041
29.
Buonomo
,
B.
,
Celik
,
H.
,
Ercole
,
D.
,
Manca
,
O.
, and
Mobedi
,
M.
,
2019
, “
Numerical Study on Latent Thermal Energy Storage Systems With Aluminum Foam in Local Thermal Equilibrium
,”
Appl. Therm. Eng.
,
159
, p.
113980
.10.1016/j.applthermaleng.2019.113980
30.
Memon
,
A.
,
Mishra
,
G.
, and
Gupta
,
A. K.
,
2020
, “
Buoyancy-Driven Melting and Heat Transfer Around a Horizontal Cylinder in Square Enclosure Filled With Phase Change Material
,”
Appl. Therm. Eng.
,
181
, p.
115990
.10.1016/j.applthermaleng.2020.115990
31.
Hasadi
,
Y. M.
, and
Khodadadi
,
J. M.
,
2013
, “
Numerical Simulation of the Effect of the Size of Suspensions on the Solidification Process of Nanoparticle-Enhanced Phase Change Materials
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
135
(
5
), p.
052901
.10.1115/1.4023542
32.
Sriram
,
M.
, and
Bhattacharya
,
A.
,
2021
, “
Analysis and Optimization of Triple Tube Phase Change Material Based Energy Storage System
,”
J. Energy Storage
,
36
, p.
102350
.10.1016/j.est.2021.102350
33.
Fadl
,
M.
, and
Eames
,
P. C.
,
2019
, “
An Experimental Investigation of the Heat Transfer and Energy Storage Characteristics of a Compact Latent Heat Thermal Energy Storage System for Domestic Hot Water Applications
,”
Energy
,
188
, p.
116083
.10.1016/j.energy.2019.116083
34.
Liu
,
C.
, and
Groulx
,
D.
,
2014
, “
Experimental Study of the Phase Change Heat Transfer Inside a Horizontal Cylindrical Latent Heat Energy Storage System
,”
Int. J. Therm. Sci.
,
82
, pp.
100
110
.10.1016/j.ijthermalsci.2014.03.014
You do not currently have access to this content.