Abstract

Heat transfer in solids has traditionally been described by Fourier's law, which assumes local equilibrium and a diffusive transport regime. However, advancements in nanotechnology and the development of novel materials have revealed nonclassical heat transfer phenomena that extend beyond this traditional framework. These phenomena, which can be broadly categorized into those governed by kinetic theory and those extending beyond it, include ballistic transport, phonon hydrodynamics, coherent phonon transport, Anderson localization, and glass-like heat transfer. Recent theoretical and experimental studies have focused on characterizing these nonclassical behaviors using methods such as the Boltzmann transport equation, molecular dynamics, and advanced spectroscopy techniques. In particular, the dual nature of phonons, exhibiting both particle-like and wave-like characteristics, is fundamental to understanding these phenomena. This review summarizes state-of-the-art findings in the field, highlighting the importance of integrating both particle and wave models to fully capture the complexities of heat transfer in modern materials. The emergence of new research areas, such as chiral and topological phonons, further underscores the potential for advancing phonon engineering. These developments open up exciting opportunities for designing materials with tailored thermal properties and new device mechanisms, potentially leading to applications in thermal management, energy technologies, and quantum science.

References

1.
Fourier
,
J. B. J.
,
1822
,
Théorie Analytique de La Chaleur
,
Chez Firmin Didot, Père et Fils
,
Paris
.
2.
Bergman
,
T. L.
, and
Incropera
,
F. P.
,
2011
,
Fundamentals of Heat and Mass Transfer
,
Wiley
,
Hoboken, NJ
.
3.
Chen
,
G.
,
2005
,
Nanoscale Energy Transport and Conversion: A Parallel Treatment of Electrons, Molecules, Phonons, and Photons
,
Oxford University Press
,
New York
.
4.
Kang
,
J. S.
,
Li
,
M.
,
Wu
,
H.
,
Nguyen
,
H.
, and
Hu
,
Y.
,
2018
, “
Experimental Observation of High Thermal Conductivity in Boron Arsenide
,”
Science
,
361
(
6402
), pp.
575
578
.10.1126/science.aat5522
5.
Li
,
S.
,
Qin
,
Z.
,
Wu
,
H.
,
Li
,
M.
,
Kunz
,
M.
,
Alatas
,
A.
,
Kavner
,
A.
, and
Hu
,
Y.
,
2022
, “
Anomalous Thermal Transport Under High Pressure in Boron Arsenide
,”
Nature
,
612
(
7940
), pp.
459
464
.10.1038/s41586-022-05381-x
6.
Li
,
M.
,
Wu
,
H.
,
Avery
,
E. M.
,
Qin
,
Z.
,
Goronzy
,
D. P.
,
Nguyen
,
H. D.
,
Liu
,
T.
,
Weiss
,
P. S.
, and
Hu
,
Y.
,
2023
, “
Electrically Gated Molecular Thermal Switch
,”
Science
,
382
(
6670
), pp.
585
589
.10.1126/science.abo4297
7.
Peierls
,
R.
,
1929
, “
Zur Kinetischen Theorie Der Wärmeleitung in Kristallen
,”
Ann. Phys.
,
395
(
8
), pp.
1055
1101
.10.1002/andp.19293950803
8.
Srivastava
,
G. P.
,
2022
,
The Physics of Phonons
,
CRC Press
,
Boca Raton
.
9.
Simoncelli
,
M.
,
Marzari
,
N.
, and
Mauri
,
F.
,
2019
, “
Unified Theory of Thermal Transport in Crystals and Glasses
,”
Nat. Phys.
,
15
(
8
), pp.
809
813
.10.1038/s41567-019-0520-x
10.
Simoncelli
,
M.
,
Marzari
,
N.
, and
Mauri
,
F.
,
2022
, “
Wigner Formulation of Thermal Transport in Solids
,”
Phys. Rev. X
,
12
(
4
), p.
41011
.10.1103/PhysRevX.12.041011
11.
Broido
,
D. A.
,
Malorny
,
M.
,
Birner
,
G.
,
Mingo
,
N.
, and
Stewart
,
D. A.
,
2007
, “
Intrinsic Lattice Thermal Conductivity of Semiconductors From First Principles
,”
Appl. Phys. Lett.
,
91
(
23
), p.
231922
.10.1063/1.2822891
12.
Garg
,
J.
,
Bonini
,
N.
,
Kozinsky
,
B.
, and
Marzari
,
N.
,
2011
, “
Role of Disorder and Anharmonicity in the Thermal Conductivity of Silicon-Germanium Alloys: A First-Principles Study
,”
Phys. Rev. Lett.
,
106
(
4
), p.
045901
.10.1103/PhysRevLett.106.045901
13.
Esfarjani
,
K.
,
Chen
,
G.
, and
Stokes
,
H. T.
,
2011
, “
Heat Transport in Silicon From First-Principles Calculations
,”
Phys. Rev. B—Condens. Matter Mater. Phys.
,
84
(
8
), p.
85204
.10.1103/PhysRevB.84.085204
14.
Lindsay
,
L.
,
Broido
,
D. A.
, and
Reinecke
,
T. L.
,
2013
, “
First-Principles Determination of Ultrahigh Thermal Conductivity of Boron Arsenide: A Competitor for Diamond?
,”
Phys. Rev. Lett.
,
111
(
2
), p.
025901
.10.1103/PhysRevLett.111.025901
15.
Feng
,
T.
,
Lindsay
,
L.
, and
Ruan
,
X.
,
2017
, “
Four-Phonon Scattering Significantly Reduces Intrinsic Thermal Conductivity of Solids
,”
Phys. Rev. B
,
96
(
16
), p.
161201
.10.1103/PhysRevB.96.161201
16.
Fan
,
H.
,
Wu
,
H.
,
Lindsay
,
L.
, and
Hu
,
Y.
,
2019
, “
Ab Initio Investigation of Single-Layer High Thermal Conductivity Boron Compounds
,”
Phys. Rev. B
,
100
(
8
), p.
085420
.10.1103/PhysRevB.100.085420
17.
Kang
,
J. S.
,
Wu
,
H.
,
Li
,
M.
, and
Hu
,
Y.
,
2019
, “
Intrinsic Low Thermal Conductivity and Phonon Renormalization Due to Strong Anharmonicity of Single-Crystal Tin Selenide
,”
Nano Lett.
,
19
(
8
), pp.
4941
4948
.10.1021/acs.nanolett.9b01056
18.
Wu
,
H.
,
Fan
,
H.
, and
Hu
,
Y.
,
2021
, “
Ab Initio Determination of Ultrahigh Thermal Conductivity in Ternary Compounds
,”
Phys. Rev. B
,
103
(
4
), p.
L041203
.10.1103/PhysRevB.103.L041203
19.
Wu
,
H.
,
Qin
,
Z.
,
Li
,
S.
,
Lindsay
,
L.
, and
Hu
,
Y.
,
2023
, “
Nonperturbative Determination of Isotope-Induced Anomalous Vibrational Physics
,”
Phys. Rev. B
,
108
(
14
), p.
L140302
.10.1103/PhysRevB.108.L140302
20.
Peterson
,
R. B.
,
1994
, “
Direct Simulation of Phonon-Mediated Heat Transfer in a Debye Crystal
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
116
(
4
), pp.
815
822
.10.1115/1.2911452
21.
Mazumder
,
S.
, and
Majumdar
,
A.
,
2001
, “
Monte Carlo Study of Phonon Transport in Solid Thin Films Including Dispersion and Polarization
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
123
(
4
), pp.
749
759
.10.1115/1.1377018
22.
Péraud
,
J.-P. M.
, and
Hadjiconstantinou
,
N. G.
,
2011
, “
Efficient Simulation of Multidimensional Phonon Transport Using Energy-Based Variance-Reduced Monte Carlo Formulations
,”
Phys. Rev. B
,
84
(
20
), p.
205331
.10.1103/PhysRevB.84.205331
23.
Hu
,
Y.
,
Zeng
,
L.
,
Minnich
,
A. J.
,
Dresselhaus
,
M. S.
, and
Chen
,
G.
,
2015
, “
Spectral Mapping of Thermal Conductivity Through Nanoscale Ballistic Transport
,”
Nat. Nanotechnol.
,
10
(
8
), pp.
701
706
.10.1038/nnano.2015.109
24.
Kang
,
J. S.
,
Li
,
M.
,
Wu
,
H.
,
Nguyen
,
H.
,
Aoki
,
T.
, and
Hu
,
Y.
,
2021
, “
Integration of Boron Arsenide Cooling Substrates Into Gallium Nitride Devices
,”
Nat. Electron.
,
4
(
6
), pp.
416
423
.10.1038/s41928-021-00595-9
25.
Landon
,
C. D.
, and
Hadjiconstantinou
,
N. G.
,
2014
, “
Deviational Simulation of Phonon Transport in Graphene Ribbons With Ab Initio Scattering
,”
J. Appl. Phys.
,
116
, p.
163502
.10.1063/1.4898090
26.
Wu
,
H.
, and
Hu
,
Y.
,
2024
, “
Ab Initio Investigations on Hydrodynamic Phonon Transport: From Diffusion to Convection
,”
Int. J. Heat Mass Transfer
,
220
, p.
124988
.10.1016/j.ijheatmasstransfer.2023.124988
27.
Henry
,
A. S.
, and
Chen
,
G.
,
2008
, “
Spectral Phonon Transport Properties of Silicon Based on Molecular Dynamics Simulations and Lattice Dynamics
,”
J. Comput. Theor. Nanosci.
,
5
(
2
), pp.
141
152
.10.1166/jctn.2008.2454
28.
Landry
,
E. S.
, and
McGaughey
,
A. J. H.
,
2009
, “
Thermal Boundary Resistance Predictions From Molecular Dynamics Simulations and Theoretical Calculations
,”
Phys. Rev. B
,
80
(
16
), p.
165304
.10.1103/PhysRevB.80.165304
29.
Rajabpour
,
A.
, and
Volz
,
S.
,
2010
, “
Thermal Boundary Resistance From Mode Energy Relaxation Times: Case Study of Argon-Like Crystals by Molecular Dynamics
,”
J. Appl. Phys.
,
108
(
9
), p.
094324
.10.1063/1.3500526
30.
Li
,
M.
,
Kang
,
J. S.
,
Nguyen
,
H. D.
,
Wu
,
H.
,
Aoki
,
T.
, and
Hu
,
Y.
,
2019
, “
Anisotropic Thermal Boundary Resistance Across 2D Black Phosphorus: Experiment and Atomistic Modeling of Interfacial Energy Transport
,”
Adv. Mater.
,
31
(
33
), p.
1901021
.10.1002/adma.201901021
31.
Qin
,
Z.
,
Dai
,
L.
,
Li
,
M.
,
Li
,
S.
,
Wu
,
H.
,
White
,
K. E.
,
Gani
,
G.
,
Weiss
,
P. S.
, and
Hu
,
Y.
,
2024
, “
Moiré Pattern Controlled Phonon Polarizer Based on Twisted Graphene
,”
Adv. Mater.
,
36
(
24
), p.
2312176
.10.1002/adma.202312176
32.
Mingo
,
N.
, and
Yang
,
L.
,
2003
, “
Phonon Transport in Nanowires Coated With an Amorphous Material: An Atomistic Green's Function Approach
,”
Phys. Rev. B
,
68
(
24
), p.
245406
.10.1103/PhysRevB.68.245406
33.
Cui
,
Y.
,
Li
,
M.
, and
Hu
,
Y.
,
2020
, “
Emerging Interface Materials for Electronics Thermal Management: Experiments, Modeling, and New Opportunities
,”
J. Mater. Chem. C Mater.
,
8
(
31
), pp.
10568
10586
.10.1039/C9TC05415D
34.
Capinski
,
W. S.
, and
Maris
,
H. J.
,
1996
, “
Thermal Conductivity of GaAs/AlAs Superlattices
,”
Phys. B Condens. Matter
,
219–220
, pp.
699
701
.10.1016/0921-4526(95)00858-6
35.
Cahill
,
D. G.
,
2004
, “
Analysis of Heat Flow in Layered Structures for Time-Domain Thermoreflectance
,”
Rev. Sci. Instrum.
,
75
(
12
), pp.
5119
5122
.10.1063/1.1819431
36.
Schmidt
,
A. J.
,
Chen
,
X.
, and
Chen
,
G.
,
2008
, “
Pulse Accumulation, Radial Heat Conduction, and Anisotropic Thermal Conductivity in Pump-Probe Transient Thermoreflectance
,”
Rev. Sci. Instrum.
,
79
(
11
), p.
114902
.10.1063/1.3006335
37.
Li
,
M.
,
Kang
,
J. S.
, and
Hu
,
Y.
,
2018
, “
Anisotropic Thermal Conductivity Measurement Using a New Asymmetric-Beam Time-Domain Thermoreflectance (AB-TDTR) Method
,”
Rev. Sci. Instrum.
,
89
(
8
), p.
084901
.10.1063/1.5026028
38.
Schmidt
,
A. J.
,
Cheaito
,
R.
, and
Chiesa
,
M.
,
2009
, “
A Frequency-Domain Thermoreflectance Method for the Characterization of Thermal Properties
,”
Rev. Sci. Instrum.
,
80
(
9
), p.
094901
.10.1063/1.3212673
39.
Rogers
,
J. A.
,
Maznev
,
A. A.
,
Banet
,
M. J.
, and
Nelson
,
K. A.
,
2000
, “
Optical Generation and Characterization of Acoustic Waves in Thin Films: Fundamentals and Applications
,”
Annu. Rev. Mater. Sci.
,
30
(
1
), pp.
117
157
.10.1146/annurev.matsci.30.1.117
40.
Cui
,
L.
,
Hur
,
S.
,
Akbar
,
Z. A.
,
Klöckner
,
J. C.
,
Jeong
,
W.
,
Pauly
,
F.
,
Jang
,
S.-Y.
,
Reddy
,
P.
, and
Meyhofer
,
E.
,
2019
, “
Thermal Conductance of Single-Molecule Junctions
,”
Nature
,
572
(
7771
), pp.
628
633
.10.1038/s41586-019-1420-z
41.
Bhatnagar
,
P. L.
,
Gross
,
E. P.
, and
Krook
,
M.
,
1954
, “
A Model for Collision Processes in Gases. I. Small Amplitude Processes in Charged and Neutral One-Component Systems
,”
Phys. Rev.
,
94
(
3
), pp.
511
525
.10.1103/PhysRev.94.511
42.
Casimir
,
H. B. G.
,
1938
, “
Note on the Conduction of Heat in Crystals
,”
Physica
,
5
(
6
), pp.
495
500
.10.1016/S0031-8914(38)80162-2
43.
Jeong
,
C.
,
Datta
,
S.
, and
Lundstrom
,
M.
,
2012
, “
Thermal Conductivity of Bulk and Thin-Film Silicon: A Landauer Approach
,”
J. Appl. Phys.
,
111
(
9
), p.
093708
.10.1063/1.4710993
44.
Lindsay
,
L.
,
2016
, “
First Principles Peierls-Boltzmann Phonon Thermal Transport: A Topical Review
,”
Nanoscale Microscale Thermophys. Eng.
,
20
(
2
), pp.
67
84
.10.1080/15567265.2016.1218576
45.
Mingo
,
N.
, and
Broido
,
D. A.
,
2004
, “
Lattice Thermal Conductivity Crossovers in Semiconductor Nanowires
,”
Phys. Rev. Lett.
,
93
(
24
), p.
246106
.10.1103/PhysRevLett.93.246106
46.
Ward
,
A.
,
Broido
,
D. A.
,
Stewart
,
D. A.
, and
Deinzer
,
G.
,
2009
, “
Ab Initio Theory of the Lattice Thermal Conductivity in Diamond
,”
Phys. Rev. B—Condens. Matter Mater. Phys.
,
80
(
12
), p.
125203
.10.1103/PhysRevB.80.125203
47.
Lindsay
,
L.
,
Broido
,
D. A.
, and
Reinecke
,
T. L.
,
2012
, “
Thermal Conductivity and Large Isotope Effect in GaN From First Principles
,”
Phys. Rev. Lett.
,
109
(
9
), p.
095901
.10.1103/PhysRevLett.109.095901
48.
Ke
,
M.
,
Nguyen
,
H.
, and
Hu
,
Y.
,
2020
, “
Complementary doping of van der Waals materials through controlled intercalation for monolithically integrated electronics
,”
Nano Res.
,
13
, pp.
1369
1375
. 10.1007/s12274?020?2634?y
49.
Klitsner
,
T.
,
VanCleve
,
J. E.
,
Fischer
,
H. E.
, and
Pohl
,
R. O.
,
1988
, “
Phonon Radiative Heat Transfer and Surface Scattering
,”
Phys. Rev. B
,
38
(
11
), pp.
7576
7594
.10.1103/PhysRevB.38.7576
50.
Joshi
,
A. A.
, and
Majumdar
,
A.
,
1993
, “
Transient Ballistic and Diffusive Phonon Heat Transport in Thin Films
,”
J. Appl. Phys.
,
74
(
1
), pp.
31
39
.10.1063/1.354111
51.
Majumdar
,
A.
,
1993
, “
Microscale Heat Conduction in Dielectric Thin Films
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
115
(
1
), pp.
7
16
.10.1115/1.2910673
52.
Chen
,
G.
,
1996
, “
Nonlocal and Nonequilibrium Heat Conduction in the Vicinity of Nanoparticles
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
118
(
3
), pp.
539
545
.10.1115/1.2822665
53.
Maassen
,
J.
, and
Lundstrom
,
M.
,
2015
, “
Steady-State Heat Transport: Ballistic-to-Diffusive With Fourier's Law
,”
J. Appl. Phys.
,
117
(
3
), p.
035104
.10.1063/1.4905590
54.
Maassen
,
J.
, and
Lundstrom
,
M.
,
2015
, “
A Simple Boltzmann Transport Equation for Ballistic to Diffusive Transient Heat Transport
,”
J. Appl. Phys.
,
117
(
13
), p.
135102
.10.1063/1.4916245
55.
Chen
,
G.
,
2001
, “
Ballistic-Diffusive Heat-Conduction Equations
,”
Phys. Rev. Lett.
,
86
(
11
), pp.
2297
2300
.10.1103/PhysRevLett.86.2297
56.
Chen
,
G.
,
2002
, “
Ballistic-Diffusive Equations for Transient Heat Conduction From Nano to Macroscales
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
124
(
2
), pp.
320
328
.10.1115/1.1447938
57.
Cattaneo
,
C.
,
1948
, “
Sulla Conduzione Del Calore
,”
Atti Sem. Mat. Fis. Univ. Modena
,
3
, pp.
83
101
.
58.
Vernotte
,
P.
,
1958
, “
Les Paradoxes de La Theorie Continue de L'equation de La Chaleur
,”
C. R.
,
246
, pp.
3154
3155
.
59.
Alvarez
,
F. X.
, and
Jou
,
D.
,
2007
, “
Memory and Nonlocal Effects in Heat Transport: From Diffusive to Ballistic Regimes
,”
Appl. Phys. Lett.
,
90
(
8
), p.
083109
.10.1063/1.2645110
60.
Kresse
,
G.
, and
Furthmüller
,
J.
,
1996
, “
Efficient Iterative Schemes for ab Initio Total-Energy Calculations Using a Plane-Wave Basis Set
,”
Phys. Rev. B
,
54
(
16
), pp.
11169
11186
.10.1103/PhysRevB.54.11169
61.
Kresse
,
G.
, and
Joubert
,
D.
,
1999
, “
From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method
,”
Phys. Rev. B
,
59
(
3
), pp.
1758
1775
.10.1103/PhysRevB.59.1758
62.
Giannozzi
,
P.
,
Baroni
,
S.
,
Bonini
,
N.
,
Calandra
,
M.
,
Car
,
R.
,
Cavazzoni
,
C.
,
Ceresoli
,
D.
, et al.,
2009
, “
QUANTUM ESPRESSO: A Modular and Open-Source Software Project for Quantum Simulations of Materials
,”
J. Phys.: Condens. Matter
,
21
, p.
395502
.10.1088/0953-8984/21/39/395502
63.
Giannozzi
,
P.
,
Andreussi
,
O.
,
Brumme
,
T.
,
Bunau
,
O.
,
Buongiorno Nardelli
,
M.
,
Calandra
,
M.
,
Car
,
R.
, et al.,
2017
, “
Advanced Capabilities for Materials Modelling With QUANTUM ESPRESSO
,”
J. Phys.: Condens. Matter
,
29
(
46
), p.
465901
.10.1088/1361-648X/aa8f79
64.
Giannozzi
,
P.
,
Baseggio
,
O.
,
Bonfà
,
P.
,
Brunato
,
D.
,
Car
,
R.
,
Carnimeo
,
I.
,
Cavazzoni
,
C.
, et al.,
2020
, “
Quantum ESPRESSO Toward the Exascale
,”
J. Chem. Phys.
,
152
(
15
), p.
154105
.10.1063/5.0005082
65.
Kühne
,
T. D.
,
Iannuzzi
,
M.
,
Del Ben
,
M.
,
Rybkin
,
V. V.
,
Seewald
,
P.
,
Stein
,
F.
,
Laino
,
T.
, et al.,
2020
, “
CP2K: An Electronic Structure and Molecular Dynamics Software package-Quickstep: Efficient and Accurate Electronic Structure Calculations
,”
J. Chem. Phys.
,
152
(
19
), p.
194103
.10.1063/5.0007045
66.
Gonze
,
X.
,
Amadon
,
B.
,
Antonius
,
G.
,
Arnardi
,
F.
,
Baguet
,
L.
,
Beuken
,
J.-M.
,
Bieder
,
J.
, et al.,
2020
, “
The ABINIT Project: Impact, Environment and Recent Developments
,”
Comput. Phys. Commun.
,
248
, p.
107042
.10.1016/j.cpc.2019.107042
67.
Boker
,
S.
,
Neale
,
M.
,
Maes
,
H.
,
Wilde
,
M.
,
Spiegel
,
M.
,
Brick
,
T.
,
Spies
,
J.
, et al.,
2011
, “
OpenMx: An Open Source Extended Structural Equation Modeling Framework
,”
Psychometrika
,
76
(
2
), pp.
306
317
.10.1007/s11336-010-9200-6
68.
Tadano
,
T.
,
Gohda
,
Y.
, and
Tsuneyuki
,
S.
,
2014
, “
Anharmonic Force Constants Extracted From First-Principles Molecular Dynamics: Applications to Heat Transfer Simulations
,”
J. Phys.: Condens. Matter
,
26
(
22
), p.
225402
.10.1088/0953-8984/26/22/225402
69.
Togo
,
A.
,
2023
, “
First-Principles Phonon Calculations With Phonopy and Phono3py
,”
J. Phys. Soc. Jpn.
,
92
(
1
), p.
12001
.10.7566/JPSJ.92.012001
70.
Togo
,
A.
,
Chaput
,
L.
,
Tadano
,
T.
, and
Tanaka
,
I.
,
2023
, “
Implementation Strategies in Phonopy and phono3py
,”
J. Phys. Condens. Matter
,
35
(
35
), p.
353001
.10.1088/1361-648X/acd831
71.
Li
,
W.
,
Carrete
,
J.
,
Katcho
,
N. A.
, and
Mingo
,
N.
,
2014
, “
ShengBTE: A Solver of the Boltzmann Transport Equation for Phonons
,”
Comp. Phys. Commun.
,
185
(
6
), pp.
1747
1758
.10.1016/j.cpc.2014.02.015
72.
Han
,
Z.
,
Yang
,
X.
,
Li
,
W.
,
Feng
,
T.
, and
Ruan
,
X.
,
2022
, “
FourPhonon: An Extension Module to ShengBTE for Computing Four-Phonon Scattering Rates and Thermal Conductivity
,”
Comput. Phys. Commun.
,
270
, p.
108179
.10.1016/j.cpc.2021.108179
73.
Bao
,
H.
,
Chen
,
J.
,
Gu
,
X.
, and
Cao
,
B.
,
2018
, “
A Review of Simulation Methods in Micro/Nanoscale Heat Conduction
,”
ES Energy Environ.
,
1
(
84
), pp.
16
55
.10.30919/esee8c149
74.
Péraud
,
J.-P. M.
, and
Hadjiconstantinou
,
N. G.
,
2012
, “
An Alternative Approach to Efficient Simulation of Micro/Nanoscale Phonon Transport
,”
Appl. Phys. Lett.
,
101
, p.
153114
.10.1063/1.4757607
75.
Hua
,
Y.-C.
, and
Cao
,
B.-Y.
,
2016
, “
Ballistic-Diffusive Heat Conduction in Multiply-Constrained Nanostructures
,”
Int. J. Therm. Sci.
,
101
, pp.
126
132
.10.1016/j.ijthermalsci.2015.10.037
76.
Kang
,
J. S.
,
Wu
,
H.
, and
Hu
,
Y.
,
2017
, “
Thermal Properties and Phonon Spectral Characterization of Synthetic Boron Phosphide for High Thermal Conductivity Applications
,”
Nano Lett.
,
17
(
12
), pp.
7507
7514
.10.1021/acs.nanolett.7b03437
77.
Murthy
,
J. Y.
, and
Mathur
,
S. R.
,
2002
, “
Computation of Sub-Micron Thermal Transport Using an Unstructured Finite Volume Method
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
124
(
6
), pp.
1176
1181
.10.1115/1.1518495
78.
Romano
,
G.
,
2021
, “
Openbte: A Solver for ab-Initio Phonon Transport in Multidimensional Structures
,” arXiv:2106.02764.
79.
Narumanchi
,
S. V. J.
,
Murthy
,
J. Y.
, and
Amon
,
C. H.
,
2003
, “
Simulation of Unsteady Small Heat Source Effects in Sub-Micron Heat Conduction
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
125
(
5
), pp.
896
903
.10.1115/1.1603774
80.
Guo
,
Y.
, and
Wang
,
M.
,
2017
, “
Heat Transport in Two-Dimensional Materials by Directly Solving the Phonon Boltzmann Equation Under Callaway's Dual Relaxation Model
,”
Phys. Rev. B
,
96
(
13
), p.
134312
.10.1103/PhysRevB.96.134312
81.
Guo
,
Y.
,
Zhang
,
Z.
,
Nomura
,
M.
,
Volz
,
S.
, and
Wang
,
M.
,
2021
, “
Phonon Vortex Dynamics in Graphene Ribbon by Solving Boltzmann Transport Equation With ab Initio Scattering Rates
,”
Int. J. Heat Mass Transfer
,
169
, p.
120981
.10.1016/j.ijheatmasstransfer.2021.120981
82.
Luo
,
X.-P.
,
Guo
,
Y.-Y.
,
Wang
,
M.-R.
, and
Yi
,
H.-L.
,
2019
, “
Direct Simulation of Second Sound in Graphene by Solving the Phonon Boltzmann Equation Via a Multiscale Scheme
,”
Phys. Rev. B
,
100
(
15
), p.
155401
.10.1103/PhysRevB.100.155401
83.
Feng
,
T.
,
Yao
,
W.
,
Wang
,
Z.
,
Shi
,
J.
,
Li
,
C.
,
Cao
,
B.
, and
Ruan
,
X.
,
2017
, “
Spectral Analysis of Nonequilibrium Molecular Dynamics: Spectral Phonon Temperature and Local Nonequilibrium in Thin Films and Across Interfaces
,”
Phys. Rev. B
,
95
(
19
), p.
195202
.10.1103/PhysRevB.95.195202
84.
Hu
,
Y.
,
Feng
,
T.
,
Gu
,
X.
,
Fan
,
Z.
,
Wang
,
X.
,
Lundstrom
,
M.
,
Shrestha
,
S. S.
, and
Bao
,
H.
,
2020
, “
Unification of Nonequilibrium Molecular Dynamics and the Mode-Resolved Phonon Boltzmann Equation for Thermal Transport Simulations
,”
Phys. Rev. B
,
101
(
15
), p.
155308
.10.1103/PhysRevB.101.155308
85.
Xu
,
J.
,
Hu
,
Y.
,
Ruan
,
X.
,
Wang
,
X.
,
Feng
,
T.
, and
Bao
,
H.
,
2021
, “
Nonequilibrium Phonon Transport Induced by Finite Sizes: Effect of Phonon-Phonon Coupling
,”
Phys. Rev. B
,
104
(
10
), p.
104310
.10.1103/PhysRevB.104.104310
86.
Feng
,
T.
,
Zhong
,
Y.
,
Shi
,
J.
, and
Ruan
,
X.
,
2019
, “
Unexpected High Inelastic Phonon Transport Across Solid-Solid Interface: Modal Nonequilibrium Molecular Dynamics Simulations and Landauer Analysis
,”
Phys. Rev. B
,
99
(
4
), p.
045301
.10.1103/PhysRevB.99.045301
87.
Asheghi
,
M.
,
Leung
,
Y. K.
,
Wong
,
S. S.
, and
Goodson
,
K. E.
,
1997
, “
Phonon-Boundary Scattering in Thin Silicon Layers
,”
Appl. Phys. Lett.
,
71
(
13
), pp.
1798
1800
.10.1063/1.119402
88.
Ju
,
Y. S.
, and
Goodson
,
K. E.
,
1999
, “
Phonon Scattering in Silicon Films With Thickness of Order 100 nm
,”
Appl. Phys. Lett.
,
74
(
20
), pp.
3005
3007
.10.1063/1.123994
89.
Johnson
,
J. A.
,
Maznev
,
A. A.
,
Cuffe
,
J.
,
Eliason
,
J. K.
,
Minnich
,
A. J.
,
Kehoe
,
T.
,
Torres
,
C. M. S.
,
Chen
,
G.
, and
Nelson
,
K. A.
,
2013
, “
Direct Measurement of Room-Temperature Nondiffusive Thermal Transport Over Micron Distances in a Silicon Membrane
,”
Phys. Rev. Lett.
,
110
(
2
), p.
25901
.10.1103/PhysRevLett.110.025901
90.
Minnich
,
A. J.
,
2012
, “
Determining Phonon Mean Free Paths From Observations of Quasiballistic Thermal Transport
,”
Phys. Rev. Lett.
,
109
(
20
), p.
205901
.10.1103/PhysRevLett.109.205901
91.
Dames
,
C.
, and
Chen
,
G.
,
2006
, “
Thermal Conductivity of Nanostructured Thermoelectric Materials
,”
Thermoelectrics Handbook
,
D. M.
Rowe
, ed.,
CRC Press
, Boca Raton, FL.
92.
Yang
,
F.
, and
Dames
,
C.
,
2013
, “
Mean Free Path Spectra as a Tool to Understand Thermal Conductivity in Bulk and Nanostructures
,”
Phys. Rev. B
,
87
(
3
), p.
035437
.10.1103/PhysRevB.87.035437
93.
Zeng
,
L.
,
Collins
,
K. C.
,
Hu
,
Y.
,
Luckyanova
,
M. N.
,
Maznev
,
A. A.
,
Huberman
,
S.
,
Chiloyan
,
V.
, et al.,
2015
, “
Measuring Phonon Mean Free Path Distributions by Probing Quasiballistic Phonon Transport in Grating Nanostructures
,”
Sci. Rep.
,
5
(
1
), p.
17131
.10.1038/srep17131
94.
Peshkov
,
V.
,
1944
, “
Second Sound in Helium II
,”
J. Phys. USSR
,
8
, p.
381
.
95.
Ackerman
,
C. C.
,
Bertman
,
B.
,
Fairbank
,
H. A.
, and
Guyer
,
R. A.
,
1966
, “
Second Sound in Solid Helium
,”
Phys. Rev. Lett.
,
16
(
18
), pp.
789
791
.10.1103/PhysRevLett.16.789
96.
McNelly
,
T. F.
,
Rogers
,
S. J.
,
Channin
,
D. J.
,
Rollefson
,
R. J.
,
Goubau
,
W. M.
,
Schmidt
,
G. E.
,
Krumhansl
,
J. A.
, and
Pohl
,
R. O.
,
1970
, “
Heat Pulses in NaF: Onset of Second Sound
,”
Phys. Rev. Lett.
,
24
(
3
), pp.
100
102
.10.1103/PhysRevLett.24.100
97.
Pohl
,
D. W.
, and
Irniger
,
V.
,
1976
, “
Observation of second sound in NaF by Means of Light Scattering
,”
Phys. Rev. Lett.
,
36
(
9
), pp.
480
483
.10.1103/PhysRevLett.36.480
98.
Narayanamurti
,
V.
, and
Dynes
,
R. C.
,
1972
, “
Observation of Second Sound in Bismuth
,”
Phys. Rev. Lett.
,
28
(
22
), pp.
1461
1465
.10.1103/PhysRevLett.28.1461
99.
Huberman
,
S.
,
Duncan
,
R. A.
,
Chen
,
K.
,
Song
,
B.
,
Chiloyan
,
V.
,
Ding
,
Z.
,
Maznev
,
A. A.
,
Chen
,
G.
, and
Nelson
,
K. A.
,.
2019
, “
Observation of Second Sound in Graphite at Temperatures Above 100 K
,”
Science
,
364
(
6438
), pp.
375
379
.10.1126/science.aav3548
100.
Ward
,
J. C.
, and
Wilks
,
J.
, III
,
1952
, “
Second Sound and the Thermo-Mechanical Effect at Very Low Temperatures
,”
London, Edinburgh, Dublin Philos. Mag. J. Sci.
,
43
(
336
), pp.
48
50
.10.1080/14786440108520965
101.
Prohofsky
,
E. W.
, and
Krumhansl
,
J. A.
,
1964
, “
Second-Sound Propagation in Dielectric Solids
,”
Phys. Rev.
,
133
(
5A
), pp.
A1403
A1410
.10.1103/PhysRev.133.A1403
102.
Hardy
,
R. J.
,
1970
, “
Phonon Boltzmann Equation and Second Sound in Solids
,”
Phys. Rev. B
,
2
(
4
), pp.
1193
1207
.10.1103/PhysRevB.2.1193
103.
Guo
,
Y.
, and
Wang
,
M.
,
2015
, “
Phonon Hydrodynamics and Its Applications in Nanoscale Heat Transport
,”
Phys. Rep.
,
595
, pp.
1
44
.10.1016/j.physrep.2015.07.003
104.
Callaway
,
J.
,
1959
, “
Model for Lattice Thermal Conductivity at Low Temperatures
,”
Phys. Rev.
,
113
(
4
), pp.
1046
1051
.10.1103/PhysRev.113.1046
105.
Peierls
,
R. E.
,
1955
,
Quantum Theory of Solids
,
Oxford University Press
,
London
.
106.
Maznev
,
A. A.
, and
Wright
,
O. B.
,
2014
, “
Demystifying Umklapp vs Normal Scattering in Lattice Thermal Conductivity
,”
Am. J. Phys.
,
82
(
11
), pp.
1062
1066
.10.1119/1.4892612
107.
Allen
,
P. B.
,
2013
, “
Improved Callaway Model for Lattice Thermal Conductivity
,”
Phys. Rev. B
,
88
(
14
), p.
144302
.10.1103/PhysRevB.88.144302
108.
Ma
,
J.
,
Li
,
W.
, and
Luo
,
X.
,
2014
, “
Examining the Callaway Model for Lattice Thermal Conductivity
,”
Phys. Rev. B
,
90
(
3
), p.
035203
.10.1103/PhysRevB.90.035203
109.
Fugallo
,
G.
,
Cepellotti
,
A.
,
Paulatto
,
L.
,
Lazzeri
,
M.
,
Marzari
,
N.
, and
Mauri
,
F.
,
2014
, “
Thermal Conductivity of Graphene and Graphite: Collective Excitations and Mean Free Paths
,”
Nano Lett.
,
14
(
11
), pp.
6109
6114
.10.1021/nl502059f
110.
Li
,
X.
, and
Lee
,
S.
,
2018
, “
Role of Hydrodynamic Viscosity on Phonon Transport in Suspended Graphene
,”
Phys. Rev. B
,
97
(
9
), p.
094309
.10.1103/PhysRevB.97.094309
111.
Simoncelli
,
M.
,
Marzari
,
N.
, and
Cepellotti
,
A.
,
2020
, “
Generalization of Fourier's Law Into Viscous Heat Equations
,”
Phys. Rev. X
,
10
(
1
), p.
011019
.10.1103/PhysRevX.10.011019
112.
Lee
,
S.
,
Broido
,
D.
,
Esfarjani
,
K.
, and
Chen
,
G.
,
2015
, “
Hydrodynamic Phonon Transport in Suspended Graphene
,”
Nat. Commun.
,
6
(
1
), p.
6290
.10.1038/ncomms7290
113.
Cepellotti
,
A.
,
Fugallo
,
G.
,
Paulatto
,
L.
,
Lazzeri
,
M.
,
Mauri
,
F.
, and
Marzari
,
N.
,
2015
, “
Phonon Hydrodynamics in Two-Dimensional Materials
,”
Nat. Commun.
,
6
(
1
), p.
6400
.10.1038/ncomms7400
114.
Ding
,
Z.
,
Chen
,
K.
,
Song
,
B.
,
Shin
,
J.
,
Maznev
,
A. A.
,
Nelson
,
K. A.
, and
Chen
,
G.
,
2022
, “
Observation of Second Sound in Graphite Over 200 K
,”
Nat. Commun.
,
13
(
1
), p.
285
.10.1038/s41467-021-27907-z
115.
Machida
,
Y.
,
Matsumoto
,
N.
,
Isono
,
T.
, and
Behnia
,
K.
,
2020
, “
Phonon Hydrodynamics and Ultrahigh–Room-Temperature Thermal Conductivity in Thin Graphite
,”
Science
,
367
(
6475
), pp.
309
312
.10.1126/science.aaz8043
116.
Allen
,
P. B.
, and
Feldman
,
J. L.
,
1993
, “
Thermal Conductivity of Disordered Harmonic Solids
,”
Phys. Rev. B
,
48
(
17
), pp.
12581
12588
.10.1103/PhysRevB.48.12581
117.
Green
,
M. S.
,
1952
, “
Markoff Random Processes and the Statistical Mechanics of Time-Dependent Phenomena
,”
J. Chem. Phys.
,
20
(
8
), pp.
1281
1295
.10.1063/1.1700722
118.
Kubo
,
R.
,
1957
, “
Statistical-Mechanical Theory of Irreversible Processes. I. General Theory and Simple Applications to Magnetic and Conduction Problems
,”
J. Phys. Soc. Jpn.
,
12
(
6
), pp.
570
586
.10.1143/JPSJ.12.570
119.
Feldman
,
J. L.
,
Allen
,
P. B.
, and
Bickham
,
S. R.
,
1999
, “
Numerical Study of Low-Frequency Vibrations in Amorphous Silicon
,”
Phys. Rev. B
,
59
(
5
), pp.
3551
3559
.10.1103/PhysRevB.59.3551
120.
Allen
,
P. B.
,
Feldman
,
J. L.
,
Fabian
,
J.
, and
Wooten
,
F.
,
1999
, “
Diffusons, Locons and Propagons: Character of Atomic Vibrations in Amorphous Si
,”
Philos. Mag. B
,
79
(
11–12
), pp.
1715
1731
.10.1080/13642819908223054
121.
Larkin
,
J. M.
, and
McGaughey
,
A. J. H.
,
2014
, “
Thermal Conductivity Accumulation in Amorphous Silica and Amorphous Silicon
,”
Phys. Rev. B
,
89
(
14
), p.
144303
.10.1103/PhysRevB.89.144303
122.
Zhou
,
Y.
,
2021
, “
Assessing the Quantum Effect in Classical Thermal Conductivity of Amorphous Silicon
,”
J. Appl. Phys.
,
129
(
23
), p.
235104
.10.1063/5.0054039
123.
Moon
,
J.
,
2021
, “
Examining Normal Modes as Fundamental Heat Carriers in Amorphous Solids: The Case of Amorphous Silicon
,”
J. Appl. Phys.
,
130
(
5
), p.
055101
.10.1063/5.0043597
124.
Cai
,
Z.
,
Lin
,
S.
,
Ahmadian-Yazdi
,
M.-R.
, and
Zhao
,
C.
,
2024
, “
Diffuson-Dominated and Ultra Defect-Tolerant Two-Channel Thermal Transport in Hybrid Halide Perovskites
,”
Adv. Funct. Mater.
,
34
, p.
2307648
.10.1002/adfm.202307648
125.
Shenogin
,
S.
,
Bodapati
,
A.
,
Keblinski
,
P.
, and
McGaughey
,
A. J. H.
,
2009
, “
Predicting the Thermal Conductivity of Inorganic and Polymeric Glasses: The Role of Anharmonicity
,”
J. Appl. Phys.
,
105
, p.
034906
.10.1063/1.3073954
126.
He
,
Y.
,
Donadio
,
D.
, and
Galli
,
G.
,
2011
, “
Heat Transport in Amorphous Silicon: Interplay Between Morphology and Disorder
,”
Appl. Phys. Lett.
,
98
, p.
144101
.10.1063/1.3574366
127.
Liu
,
X.
,
Feldman
,
J. L.
,
Cahill
,
D. G.
,
Crandall
,
R. S.
,
Bernstein
,
N.
,
Photiadis
,
D. M.
,
Mehl
,
M. J.
, and
Papaconstantopoulos
,
D. A.
,
2009
, “
High Thermal Conductivity of a Hydrogenated Amorphous Silicon Film
,”
Phys. Rev. Lett.
,
102
(
3
), p.
035901
.10.1103/PhysRevLett.102.035901
128.
Regner
,
K. T.
,
Sellan
,
D. P.
,
Su
,
Z.
,
Amon
,
C. H.
,
McGaughey
,
A. J. H.
, and
Malen
,
J. A.
,.
2013
, “
Broadband Phonon Mean Free Path Contributions to Thermal Conductivity Measured Using Frequency Domain Thermoreflectance
,”
Nat. Commun.
,
4
(
1
), p.
1640
.10.1038/ncomms2630
129.
Mukhopadhyay
,
S.
,
Parker
,
D. S.
,
Sales
,
B. C.
,
Puretzky
,
A. A.
,
McGuire
,
M. A.
, and
Lindsay
,
L.
,
2018
, “
Two-Channel Model for Ultralow Thermal Conductivity of Crystalline Tl3 VSe4
,”
Science
,
360
(
6396
), pp.
1455
1458
.10.1126/science.aar8072
130.
Isaeva
,
L.
,
Barbalinardo
,
G.
,
Donadio
,
D.
, and
Baroni
,
S.
,
2019
, “
Modeling Heat Transport in Crystals and Glasses From a Unified Lattice-Dynamical Approach
,”
Nat. Commun.
,
10
(
1
), p.
3853
.10.1038/s41467-019-11572-4
131.
Simoncelli
,
M.
,
Mauri
,
F.
, and
Marzari
,
N.
,
2023
, “
Thermal Conductivity of Glasses: First-Principles Theory and Applications
,”
NPJ Comput. Mater.
,
9
(
1
), p.
106
.10.1038/s41524-023-01033-4
132.
Rongione
,
N. A.
,
Li
,
M.
,
Wu
,
H.
,
Nguyen
,
H. D.
,
Kang
,
J. S.
,
Ouyang
,
B.
,
Xia
,
H.
, and
Hu
,
Y.
,
2019
, “
High‐Performance Solution‐Processable Flexible SnSe Nanosheet Films for Lower Grade Waste Heat Recovery
,”
Adv. Electron. Mater.
,
5
(
3
), p.
1800774
.10.1002/aelm.201800774
133.
Li
,
M.
,
Qin
,
Z.
,
Cui
,
Y.
,
Yang
,
C.
,
Deng
,
C.
,
Wang
,
Y.
,
Kang
,
J. S.
,
Xia
,
H.
, and
Hu
,
Y.
,
2019
, “
Ultralight and Flexible Monolithic Polymer Aerogel With Extraordinary Thermal Insulation by A Facile Ambient Process
,”
Adv. Mater. Interfaces
,
6
, p.
1900314
.10.1002/admi.201900314
134.
Qin
,
Z.
,
Li
,
M.
,
Flohn
,
J.
, and
Hu
,
Y.
,
2021
, “
Thermal Management Materials for Energy-Efficient and Sustainable Future Buildings
,”
Chem. Commun.
,
57
(
92
), pp.
12236
12253
.10.1039/D1CC05486D
135.
Maldovan
,
M.
,
2015
, “
Phonon Wave Interference and Thermal Bandgap Materials
,”
Nat. Mater.
,
14
(
7
), pp.
667
674
.10.1038/nmat4308
136.
Chen
,
G.
,
Neagu
,
M.
, and
Borca-Tasciuc
,
T.
,
1997
, “
Thermal Conductivity and Heat Transfer in Superlattices
,”
MRS Proc.
,
478
, p.
85
.10.1557/PROC-478-85
137.
Chen
,
G.
,
1998
, “
Thermal Conductivity and Ballistic-Phonon Transport in the Cross-Plane Direction of Superlattices
,”
Phys. Rev. B
,
57
(
23
), pp.
14958
14973
.10.1103/PhysRevB.57.14958
138.
Hyldgaard
,
P.
, and
Mahan
,
G. D.
,
1997
, “
Phonon Superlattice Transport
,”
Phys. Rev. B
,
56
(
17
), pp.
10754
10757
.10.1103/PhysRevB.56.10754
139.
Tamura
,
S.
,
Tanaka
,
Y.
, and
Maris
,
H. J.
,
1999
, “
Phonon Group Velocity and Thermal Conduction in Superlattices
,”
Phys. Rev. B
,
60
(
4
), pp.
2627
2630
.10.1103/PhysRevB.60.2627
140.
Kiselev
,
A. A.
,
Kim
,
K. W.
, and
Stroscio
,
M. A.
,
2000
, “
Thermal Conductivity of Si/Ge Superlattices: A Realistic Model With a Diatomic Unit Cell
,”
Phys. Rev. B
,
62
(
11
), pp.
6896
6899
.10.1103/PhysRevB.62.6896
141.
Simkin
,
M. V.
, and
Mahan
,
G. D.
,
2000
, “
Minimum Thermal Conductivity of Superlattices
,”
Phys. Rev. Lett.
,
84
(
5
), pp.
927
930
.10.1103/PhysRevLett.84.927
142.
Ravichandran
,
J.
,
Yadav
,
A. K.
,
Cheaito
,
R.
,
Rossen
,
P. B.
,
Soukiassian
,
A.
,
Suresha
,
S. J.
,
Duda
,
J. C.
, et al.,
2014
, “
Crossover From Incoherent to Coherent Phonon Scattering in Epitaxial Oxide Superlattices
,”
Nat. Mater.
,
13
(
2
), pp.
168
172
.10.1038/nmat3826
143.
Garg
,
J.
, and
Chen
,
G.
,
2013
, “
Minimum Thermal Conductivity in Superlattices: A First-Principles Formalism
,”
Phys. Rev. B
,
87
(
14
), p.
140302
.10.1103/PhysRevB.87.140302
144.
Tian
,
Z.
,
Esfarjani
,
K.
, and
Chen
,
G.
,
2014
, “
Green's Function Studies of Phonon Transport Across Si/Ge Superlattices
,”
Phys. Rev. B
,
89
(
23
), p.
235307
.10.1103/PhysRevB.89.235307
145.
Qiu
,
B.
,
Chen
,
G.
, and
Tian
,
Z.
,
2015
, “
Effects of Aperiodicity and Roughness on Coherent Heat Conduction in Superlattices
,”
Nanoscale Microscale Thermophys. Eng.
,
19
(
4
), pp.
272
278
.10.1080/15567265.2015.1102186
146.
Landry
,
E. S.
, and
McGaughey
,
A. J. H.
,
2009
, “
Effect of Interfacial Species Mixing on Phonon Transport in Semiconductor Superlattices
,”
Phys. Rev. B
,
79
(
7
), p.
075316
.10.1103/PhysRevB.79.075316
147.
Latour
,
B.
,
Volz
,
S.
, and
Chalopin
,
Y.
,
2014
, “
Microscopic Description of Thermal-Phonon Coherence: From Coherent Transport to Diffuse Interface Scattering in Superlattices
,”
Phys. Rev. B
,
90
(
1
), p.
014307
.10.1103/PhysRevB.90.014307
148.
Jain
,
A.
,
Yu
,
Y.-J.
, and
McGaughey
,
A. J. H.
,
2013
, “
Phonon Transport in Periodic Silicon Nanoporous Films With Feature Sizes Greater Than 100 nm
,”
Phys. Rev. B
,
87
(
19
), p.
195301
.10.1103/PhysRevB.87.195301
149.
Mu
,
X.
,
Zhang
,
T.
,
Go
,
D. B.
, and
Luo
,
T.
,
2015
, “
Coherent and Incoherent Phonon Thermal Transport in Isotopically Modified Graphene Superlattices
,”
Carbon
,
83
, pp.
208
216
.10.1016/j.carbon.2014.11.028
150.
Guo
,
R.
,
Jho
,
Y.-D.
, and
Minnich
,
A. J.
,
2018
, “
Coherent Control of Thermal Phonon Transport in Van Der Waals Superlattices
,”
Nanoscale
,
10
(
30
), pp.
14432
14440
.10.1039/C8NR02150C
151.
Qu
,
X.
, and
Gu
,
J.
,
2020
, “
Phonon Transport and Thermal Conductivity of Diamond Superlattice Nanowires: A Comparative Study With SiGe Superlattice Nanowires
,”
RSC Adv.
,
10
(
3
), pp.
1243
1248
.10.1039/C9RA08520C
152.
Lee
,
S.-M.
,
Cahill
,
D. G.
, and
Venkatasubramanian
,
R.
,
1997
, “
Thermal Conductivity of Si–Ge Superlattices
,”
Appl. Phys. Lett.
,
70
(
22
), pp.
2957
2959
.10.1063/1.118755
153.
Luckyanova
,
M. N.
,
Garg
,
J.
,
Esfarjani
,
K.
,
Jandl
,
A.
,
Bulsara
,
M. T.
,
Schmidt
,
A. J.
,
Minnich
,
A. J.
, et al.,
2012
, “
Coherent Phonon Heat Conduction in Superlattices
,”
Science
,
338
(
6109
), pp.
936
939
.10.1126/science.1225549
154.
Christodoulides
,
A. D.
,
Guo
,
P.
,
Dai
,
L.
,
Hoffman
,
J. M.
,
Li
,
X.
,
Zuo
,
X.
,
Rosenmann
,
D.
, et al.,
2021
, “
Signatures of Coherent Phonon Transport in Ultralow Thermal Conductivity Two-Dimensional Ruddlesden–Popper Phase Perovskites
,”
ACS Nano
,
15
(
3
), pp.
4165
4172
.10.1021/acsnano.0c03595
155.
Zen
,
N.
,
Puurtinen
,
T. A.
,
Isotalo
,
T. J.
,
Chaudhuri
,
S.
, and
Maasilta
,
I. J.
,
2014
, “
Engineering Thermal Conductance Using a Two-Dimensional Phononic Crystal
,”
Nat. Commun.
,
5
(
1
), p.
3435
.10.1038/ncomms4435
156.
Wingert
,
M. C.
,
Chen
,
Z. C. Y.
,
Dechaumphai
,
E.
,
Moon
,
J.
,
Kim
,
J.-H.
,
Xiang
,
J.
, and
Chen
,
R.
,
2011
, “
Thermal Conductivity of Ge and Ge–Si Core–Shell Nanowires in the Phonon Confinement Regime
,”
Nano Lett.
,
11
(
12
), pp.
5507
5513
.10.1021/nl203356h
157.
Poyser
,
C. L.
,
Czerniuk
,
T.
,
Akimov
,
A.
,
Diroll
,
B. T.
,
Gaulding
,
E. A.
,
Salasyuk
,
A. S.
,
Kent
,
A. J.
,
Yakovlev
,
D. R.
,
Bayer
,
M.
, and
Murray
,
C. B.
,
2016
, “
Coherent Acoustic Phonons in Colloidal Semiconductor Nanocrystal Superlattices
,”
ACS Nano
,
10
(
1
), pp.
1163
1169
.10.1021/acsnano.5b06465
158.
Venkatasubramanian
,
R.
,
2000
, “
Lattice Thermal Conductivity Reduction and Phonon Localizationlike Behavior in Superlattice Structures
,”
Phys. Rev. B
,
61
(
4
), pp.
3091
3097
.10.1103/PhysRevB.61.3091
159.
Wang
,
Y.
,
Huang
,
H.
, and
Ruan
,
X.
,
2014
, “
Decomposition of Coherent and Incoherent Phonon Conduction in Superlattices and Random Multilayers
,”
Phys. Rev. B
,
90
(
16
), p.
165406
.10.1103/PhysRevB.90.165406
160.
Nika
,
D. L.
,
Cocemasov
,
A. I.
,
Crismari
,
D. V.
, and
Balandin
,
A. A.
,
2013
, “
Thermal Conductivity Inhibition in Phonon Engineered Core-Shell Cross-Section Modulated Si/Ge Nanowires
,”
Appl. Phys. Lett.
,
102
, p.
213109
.10.1063/1.4807389
161.
Mendoza
,
J.
, and
Chen
,
G.
,
2016
, “
Anderson Localization of Thermal Phonons Leads to a Thermal Conductivity Maximum
,”
Nano Lett
,
16
(
12
), pp.
7616
7620
.10.1021/acs.nanolett.6b03550
162.
Luckyanova
,
M. N.
,
Mendoza
,
J.
,
Lu
,
H.
,
Song
,
B.
,
Huang
,
S.
,
Zhou
,
J.
,
Li
,
M.
, et al.,
2018
, “
Phonon Localization in Heat Conduction
,”
Sci. Adv.
,
4
(
12
), p.
eaat9460
.10.1126/sciadv.aat9460
163.
Hu
,
R.
,
Iwamoto
,
S.
,
Feng
,
L.
,
Ju
,
S.
,
Hu
,
S.
,
Ohnishi
,
M.
,
Nagai
,
N.
,
Hirakawa
,
K.
, and
Shiomi
,
J.
,
2020
, “
Machine-Learning-Optimized Aperiodic Superlattice Minimizes Coherent Phonon Heat Conduction
,”
Phys. Rev. X
,
10
(
2
), p.
021050
.10.1103/PhysRevX.10.021050
164.
Roy Chowdhury
,
P.
,
Reynolds
,
C.
,
Garrett
,
A.
,
Feng
,
T.
,
Adiga
,
S. P.
, and
Ruan
,
X.
,
2020
, “
Machine Learning Maximized Anderson Localization of Phonons in Aperiodic Superlattices
,”
Nano Energy
,
69
, p.
104428
.10.1016/j.nanoen.2019.104428
165.
Wilson
,
R. B.
, and
Cahill
,
D. G.
,
2012
, “
Experimental Validation of the Interfacial Form of the Wiedemann-Franz Law
,”
Phys. Rev. Lett.
,
108
(
25
), p.
255901
.10.1103/PhysRevLett.108.255901
166.
Lyeo
,
H.-K.
, and
Cahill
,
D. G.
,
2006
, “
Thermal Conductance of Interfaces Between Highly Dissimilar Materials
,”
Phys. Rev. B—Condens. Matter Mater. Phys.
,
73
(
14
), p.
144301
.10.1103/PhysRevB.73.144301
167.
Monachon
,
C.
,
Weber
,
L.
, and
Dames
,
C.
,
2016
, “
Thermal Boundary Conductance: A Materials Science Perspective
,”
Annu. Rev. Mater. Res.
,
46
(
1
), pp.
433
463
.10.1146/annurev-matsci-070115-031719
168.
Li
,
M.
,
Pan
,
K.
,
Ge
,
Y.
,
Huynh
,
K.
,
Goorsky
,
M. S.
,
Fisher
,
T. S.
, and
Hu
,
Y.
,
2024
, “
Wafer-Scale Bonded GaN–AlN With High Interface Thermal Conductance
,”
Appl. Phys. Lett.
,
125
(
3
), p.
032104
.10.1063/5.0206263
169.
Adnan
,
K. Z.
, and
Feng
,
T.
,
2024
, “
Thermal Boundary Conductance and Thermal Conductivity Strongly Depend on Nearby Environment
,”
Phys. Rev. B
,
109
(
24
), p.
245302
.10.1103/PhysRevB.109.245302
170.
Swartz
,
E. T.
, and
Pohl
,
R. O.
,
1989
, “
Thermal Boundary Resistance
,”
Rev. Mod. Phys.
,
61
(
3
), pp.
605
668
.10.1103/RevModPhys.61.605
171.
Sadasivam
,
S.
,
Che
,
Y.
,
Huang
,
Z.
,
Chen
,
L.
,
Kumar
,
S.
, and
Fisher
,
T. S.
,
2014
, “
The Atomistic Green's Function Method for Interfacial Phonon Transport
,”
Annu. Rev. Heat Transfer
,
17
, pp.
89
145
.10.1615/AnnualRevHeatTransfer.2014006986
172.
Young
,
D. A.
, and
Maris
,
H. J.
,
1989
, “
Lattice-Dynamical Calculation of the Kapitza Resistance Between FCC Lattices
,”
Phys. Rev. B
,
40
(
6
), pp.
3685
3693
.10.1103/PhysRevB.40.3685
173.
Zhao
,
H.
, and
Freund
,
J. B.
,
2005
, “
Lattice-Dynamical Calculation of Phonon Scattering at Ideal Si–Ge Interfaces
,”
J. Appl. Phys.
,
97
(
2
), p.
024903
.10.1063/1.1835565
174.
Yang
,
H.-A.
, and
Cao
,
B.-Y.
,
2023
, “
Mode-Resolved Phonon Transmittance Using Lattice Dynamics: Robust Algorithm and Statistical Characteristics
,”
J. Appl. Phys.
,
134
(
15
), p.
155302
.10.1063/5.0171201
175.
van Duin
,
A. C. T.
,
Dasgupta
,
S.
,
Lorant
,
F.
, and
Goddard
,
W.
,
2001
, “
A. ReaxFF: A Reactive Force Field for Hydrocarbons
,”
J. Phys. Chem. A
,
105
(
41
), pp.
9396
9409
.10.1021/jp004368u
176.
Deringer
,
V. L.
,
Caro
,
M. A.
, and
Csányi
,
G.
,
2019
, “
Machine Learning Interatomic Potentials as Emerging Tools for Materials Science
,”
Adv. Mater.
,
31
(
46
), p.
1902765
.10.1002/adma.201902765
177.
Mueller
,
T.
,
Hernandez
,
A.
, and
Wang
,
C.
,
2020
, “
Machine Learning for Interatomic Potential Models
,”
J. Chem. Phys.
,
152
(
5
), p.
050902
.10.1063/1.5126336
178.
Pollack
,
G. L.
,
1969
, “
Kapitza resistance
,”
Rev. Mod. Phys.
,
41
(
1
), pp.
48
81
. 10.1103/RevModPhys.41.48
179.
Zhang
,
X.
,
Fujiwara
,
S.
, and
Fujii
,
M.
,
2000
, “
Measurements of Thermal Conductivity and Electrical Conductivity of a Single Carbon Fiber
,”
Int. J. Thermophys.
,
21
, pp.
965
980
.10.1023/A:1006674510648
180.
Fujii
,
M.
,
Zhang
,
X.
,
Xie
,
H.
,
Ago
,
H.
,
Takahashi
,
K.
,
Ikuta
,
T.
,
Abe
,
H.
, and
Shimizu
,
T.
,
2005
, “
Measuring the Thermal Conductivity of a Single Carbon Nanotube
,”
Phys. Rev. Lett.
,
95
(
6
), p.
065502
.10.1103/PhysRevLett.95.065502
181.
Hirotani
,
J.
,
Ikuta
,
T.
,
Nishiyama
,
T.
, and
Takahashi
,
K.
,
2011
, “
Thermal Boundary Resistance Between the End of an Individual Carbon Nanotube and a Au Surface
,”
Nanotechnology
,
22
(
31
), p.
315702
.10.1088/0957-4484/22/31/315702
182.
Lee
,
S.-M.
, and
Cahill
,
D. G.
,
1997
, “
Heat Transport in Thin Dielectric Films
,”
J. Appl. Phys.
,
81
(
6
), pp.
2590
2595
.10.1063/1.363923
183.
Chen
,
Z.
,
Jang
,
W.
,
Bao
,
W.
,
Lau
,
C. N.
, and
Dames
,
C.
,
2009
, “
Thermal Contact Resistance Between Graphene and Silicon Dioxide
,”
Appl. Phys. Lett.
,
95
(
16
), p.
161910
.10.1063/1.3245315
184.
Dames
,
C.
,
2013
, “
Measuring the Thermal Conductivity of Thin Films: 3 Omega and Related Electrothermal Methods
,”
Annu. Rev. Heat Transfer
,
16
(
1
), pp.
7
49
.10.1615/AnnualRevHeatTransfer.v16.20
185.
Malen
,
J. A.
,
Baheti
,
K.
,
Tong
,
T.
,
Zhao
,
Y.
,
Hudgings
,
J. A.
, and
Majumdar
,
A.
,
2011
, “
Optical Measurement of Thermal Conductivity Using Fiber Aligned Frequency Domain Thermoreflectance
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
133
(
8
), p.
081601
.10.1115/1.4003545
186.
Koh
,
Y. K.
,
Bae
,
M.-H.
,
Cahill
,
D. G.
, and
Pop
,
E.
,
2010
, “
Heat Conduction Across Monolayer and Few-Layer Graphenes
,”
Nano Lett.
,
10
(
11
), pp.
4363
4368
.10.1021/nl101790k
187.
Brown
,
D. B.
,
Shen
,
W.
,
Li
,
X.
,
Xiao
,
K.
,
Geohegan
,
D. B.
, and
Kumar
,
S.
,
2019
, “
Spatial Mapping of Thermal Boundary Conductance at Metal–Molybdenum Diselenide Interfaces
,”
ACS Appl. Mater. Interfaces
,
11
(
15
), pp.
14418
14426
.10.1021/acsami.8b22702
188.
Song
,
B.
,
Fiorino
,
A.
,
Meyhofer
,
E.
, and
Reddy
,
P.
,
2015
, “
Near-Field Radiative Thermal Transport: From Theory to Experiment
,”
AIP Adv.
,
5
, p.
53503
.10.1063/1.4919048
189.
Polder
,
D.
, and
Van Hove
,
M.
,
1971
, “
Theory of Radiative Heat Transfer Between Closely Spaced Bodies
,”
Phys. Rev. B
,
4
(
10
), pp.
3303
3314
.10.1103/PhysRevB.4.3303
190.
Rytov
,
S. M.
, and
Erkku
,
H.
,
1959
,
Theory of Electric Fluctuations and Thermal Radiation
,
Air Force Cambridge Research Center
,
Bedford, MA
.
191.
Mulet
,
J.-P.
,
Joulain
,
K.
,
Carminati
,
R.
, and
Greffet
,
J.-J.
,
2001
, “
Nanoscale Radiative Heat Transfer Between a Small Particle and a Plane Surface
,”
Appl. Phys. Lett.
,
78
(
19
), pp.
2931
2933
.10.1063/1.1370118
192.
Narayanaswamy
,
A.
,
Shen
,
S.
, and
Chen
,
G.
,
2008
, “
Near-Field Radiative Heat Transfer Between a Sphere and a Substrate
,”
Phys. Rev. B
,
78
(
11
), p.
115303
.10.1103/PhysRevB.78.115303
193.
Cravalho
,
E. G.
,
Tien
,
C. L.
, and
Caren
,
R. P.
,
1967
, “
Effect of Small Spacings on Radiative Transfer Between Two Dielectrics
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
89
(
4
), pp.
351
358
.10.1115/1.3614396
194.
Domoto
,
G. A.
,
Boehm
,
R. F.
, and
Tien
,
C. L.
,
1970
, “
Experimental Investigation of Radiative Transfer Between Metallic Surfaces at Cryogenic Temperatures
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
92
(
3
), pp.
412
416
.10.1115/1.3449677
195.
Hargreaves
,
C. M.
,
1969
, “
Anomalous Radiative Transfer Between Closely-Spaced Bodies
,”
Phys. Lett. A
,
30
(
9
), pp.
491
492
.10.1016/0375-9601(69)90264-3
196.
Xu
,
J.-B.
,
Läuger
,
K.
,
Möller
,
R.
,
Dransfeld
,
K.
, and
Wilson
,
I. H.
,
1994
, “
Heat Transfer Between Two Metallic Surfaces at Small Distances
,”
J. Appl. Phys.
,
76
(
11
), pp.
7209
7216
.10.1063/1.358001
197.
Kittel
,
A.
,
Müller-Hirsch
,
W.
,
Parisi
,
J.
,
Biehs
,
S.-A.
,
Reddig
,
D.
, and
Holthaus
,
M.
,
2005
, “
Near-Field Heat Transfer in a Scanning Thermal Microscope
,”
Phys. Rev. Lett.
,
95
(
22
), p.
224301
.10.1103/PhysRevLett.95.224301
198.
Hu
,
L.
,
Narayanaswamy
,
A.
,
Chen
,
X.
, and
Chen
,
G.
,
2008
, “
Near-Field Thermal Radiation Between Two Closely Spaced Glass Plates Exceeding Planck's Blackbody Radiation Law
,”
Appl. Phys. Lett.
,
92
(
13
), p.
133106
.10.1063/1.2905286
199.
Varesi
,
J.
,
Lai
,
J.
,
Perazzo
,
T.
,
Shi
,
Z.
, and
Majumdar
,
A.
,
1997
, “
Photothermal Measurements at Picowatt Resolution Using Uncooled Micro-Optomechanical Sensors
,”
Appl. Phys. Lett.
,
71
(
3
), pp.
306
308
.10.1063/1.120440
200.
Luo
,
T.
, and
Chen
,
G.
,
2013
, “
Nanoscale Heat Transfer – From Computation to Experiment
,”
Phys. Chem. Chem. Phys.
,
15
(
10
), p.
3389
.10.1039/c2cp43771f
201.
Gimzewski
,
J. K.
,
Gerber
,
C.
,
Meyer
,
E.
, and
Schlittler
,
R. R.
,
1994
, “
Observation of a Chemical Reaction Using a Micromechanical Sensor
,”
Chem. Phys. Lett.
,
217
(
5–6
), pp.
589
594
.10.1016/0009-2614(93)E1419-H
202.
Mohideen
,
U.
, and
Roy
,
A.
,
1998
, “
Precision Measurement of the Casimir Force From 0.1 to 0.9 μm
,”
Phys. Rev. Lett.
,
81
(
21
), pp.
4549
4552
.10.1103/PhysRevLett.81.4549
203.
Rousseau
,
E.
,
Siria
,
A.
,
Jourdan
,
G.
,
Volz
,
S.
,
Comin
,
F.
,
Chevrier
,
J.
, and
Greffet
,
J.-J.
,
2009
, “
Radiative Heat Transfer at the Nanoscale
,”
Nat. Photonics
,
3
(
9
), pp.
514
517
.10.1038/nphoton.2009.144
204.
Shen
,
S.
,
Narayanaswamy
,
A.
, and
Chen
,
G.
,
2009
, “
Surface Phonon Polaritons Mediated Energy Transfer Between Nanoscale Gaps
,”
Nano Lett.
,
9
(
8
), pp.
2909
2913
.10.1021/nl901208v
205.
Messina
,
R.
, and
Antezza
,
M.
,
2011
, “
Scattering-Matrix Approach to Casimir-Lifshitz Force and Heat Transfer Out of Thermal Equilibrium Between Arbitrary Bodies
,”
Phys. Rev. A
,
84
(
4
), p.
042102
.10.1103/PhysRevA.84.042102
206.
Krüger
,
M.
,
Emig
,
T.
, and
Kardar
,
M.
,
2011
, “
Nonequilibrium Electromagnetic Fluctuations: Heat Transfer and Interactions
,”
Phys. Rev. Lett.
,
106
(
21
), p.
210404
.10.1103/PhysRevLett.106.210404
207.
Krüger
,
M.
,
Bimonte
,
G.
,
Emig
,
T.
, and
Kardar
,
M.
,
2012
, “
Trace Formulas for Nonequilibrium Casimir Interactions, Heat Radiation, and Heat Transfer for Arbitrary Objects
,”
Phys. Rev. B
,
86
(
11
), p.
115423
.10.1103/PhysRevB.86.115423
208.
Rodriguez
,
A. W.
,
Reid
,
M. T. H.
, and
Johnson
,
S. G.
,
2012
, “
Fluctuating-Surface-Current Formulation of Radiative Heat Transfer for Arbitrary Geometries
,”
Phys. Rev. B
,
86
(
22
), p.
220302
.10.1103/PhysRevB.86.220302
209.
Rodriguez
,
A. W.
,
Reid
,
M. T. H.
, and
Johnson
,
S. G.
,
2013
, “
Fluctuating-Surface-Current Formulation of Radiative Heat Transfer: Theory and Applications
,”
Phys. Rev. B
,
88
(
5
), p.
054305
.10.1103/PhysRevB.88.054305
210.
Rodriguez
,
A. W.
,
Reid
,
M. T. H.
,
Varela
,
J.
,
Joannopoulos
,
J. D.
,
Capasso
,
F.
, and
Johnson
,
S. G.
,.
2013
, “
Anomalous Near-Field Heat Transfer Between a Cylinder and a Perforated Surface
,”
Phys. Rev. Lett.
,
110
(
1
), p.
014301
.10.1103/PhysRevLett.110.014301
211.
Luo
,
C.
,
Narayanaswamy
,
A.
,
Chen
,
G.
, and
Joannopoulos
,
J. D.
,
2004
, “
Thermal Radiation From Photonic Crystals: A Direct Calculation
,”
Phys Rev Lett
,
93
(
21
), p.
213905
.10.1103/PhysRevLett.93.213905
212.
Otey
,
C. R.
,
Zhu
,
L.
,
Sandhu
,
S.
, and
Fan
,
S.
,
2014
, “
Fluctuational Electrodynamics Calculations of Near-Field Heat Transfer in Non-Planar Geometries: A Brief Overview
,”
J. Quant. Spectrosc. Radiat. Transfer
,
132
, pp.
3
11
.10.1016/j.jqsrt.2013.04.017
213.
Narayanaswamy
,
A.
, and
Chen
,
G.
,
2003
, “
Surface Modes for Near Field Thermophotovoltaics
,”
Appl. Phys. Lett.
,
82
(
20
), pp.
3544
3546
.10.1063/1.1575936
214.
Biehs
,
S.-A.
,
Rosa
,
F. S. S.
, and
Ben-Abdallah
,
P.
,
2011
, “
Modulation of Near-Field Heat Transfer Between Two Gratings
,”
Appl. Phys. Lett.
,
98
, p.
243102
.10.1063/1.3596707
215.
Huang
,
Y.
,
Boriskina
,
S. V.
, and
Chen
,
G.
,
2014
, “
Electrically Tunable Near-Field Radiative Heat Transfer Via Ferroelectric Materials
,”
Appl. Phys. Lett.
,
105
(
24
), p.
244102
.10.1063/1.4904456
216.
Otey
,
C. R.
,
Lau
,
W. T.
, and
Fan
,
S.
,
2010
, “
Thermal Rectification Through Vacuum
,”
Phys. Rev. Lett.
,
104
(
15
), p.
154301
.10.1103/PhysRevLett.104.154301
217.
Basu
,
S.
, and
Francoeur
,
M.
,
2011
, “
Near-Field Radiative Transfer Based Thermal Rectification Using Doped Silicon
,”
Appl. Phys. Lett.
,
98
(
11
), p.
113106
.10.1063/1.3567026
218.
Ben-Abdallah
,
P.
, and
Biehs
,
S.-A.
,
2014
, “
Near-Field Thermal Transistor
,”
Phys. Rev. Lett.
,
112
(
4
), p.
044301
.10.1103/PhysRevLett.112.044301
219.
Mills
,
D. L.
,
1975
, “
Attenuation of Surface Polaritons by Surface Roughness
,”
Phys. Rev. B
,
12
(
10
), pp.
4036
4046
.10.1103/PhysRevB.12.4036
220.
Schoenwald
,
J.
,
Burstein
,
E.
, and
Elson
,
J. M.
,
1993
, “
Propagation of Surface Polaritons Over Macroscopic Distances at Optical Frequencies
,”
Solid State Commun.
,
88
(
11–12
), pp.
1067
1071
.10.1016/0038-1098(93)90296-Y
221.
Yang
,
F.
,
Sambles
,
J. R.
, and
Bradberry
,
G. W.
,
1991
, “
Long-Range Surface Modes Supported by Thin Films
,”
Phys. Rev. B
,
44
(
11
), pp.
5855
5872
.10.1103/PhysRevB.44.5855
222.
Chen
,
D.-Z. A.
,
Narayanaswamy
,
A.
, and
Chen
,
G.
,
2005
, “
Surface Phonon-Polariton Mediated Thermal Conductivity Enhancement of Amorphous Thin Films
,”
Phys. Rev. B
,
72
(
15
), p.
155435
.10.1103/PhysRevB.72.155435
223.
Ordonez-Miranda
,
J.
,
Tranchant
,
L.
,
Tokunaga
,
T.
,
Kim
,
B.
,
Palpant
,
B.
,
Chalopin
,
Y.
,
Antoni
,
T.
, and
Volz
,
S.
,
2013
, “
Anomalous Thermal Conductivity by Surface Phonon-Polaritons of Polar Nano Thin Films Due to Their Asymmetric Surrounding Media
,”
J. Appl. Phys.
,
113
(
8
), p.
084311
.10.1063/1.4793498
224.
Ordonez-Miranda
,
J.
,
Tranchant
,
L.
,
Kim
,
B.
,
Chalopin
,
Y.
,
Antoni
,
T.
, and
Volz
,
S.
,
2014
, “
Quantized Thermal Conductance of Nanowires at Room Temperature Due to Zenneck Surface-Phonon Polaritons
,”
Phys. Rev. Lett.
,
112
(
5
), p.
055901
.10.1103/PhysRevLett.112.055901
225.
Ordonez-Miranda
,
J.
,
Tranchant
,
L.
,
Joulain
,
K.
,
Ezzahri
,
Y.
,
Drevillon
,
J.
, and
Volz
,
S.
,
2016
, “
Thermal Energy Transport in a Surface Phonon-Polariton Crystal
,”
Phys. Rev. B
,
93
(
3
), p.
035428
.10.1103/PhysRevB.93.035428
226.
Yun
,
K. H.
,
Lee
,
B. J.
, and
Lee
,
S. H.
,
2022
, “
Modeling Effective Thermal Conductivity Enhanced by Surface Waves Using the Boltzmann Transport Equation
,”
Sci. Rep.
,
12
(
1
), p.
15477
.10.1038/s41598-022-19873-3
227.
Chen
,
D.-Z. A.
, and
Chen
,
G.
,
2007
, “
Measurement of Silicon Dioxide Surface Phonon-Polariton Propagation Length by Attenuated Total Reflection
,”
Appl. Phys. Lett.
,
91
(
12
), p.
121906
.10.1063/1.2789177
228.
Tranchant
,
L.
,
Hamamura
,
S.
,
Ordonez-Miranda
,
J.
,
Yabuki
,
T.
,
Vega-Flick
,
A.
,
Cervantes-Alvarez
,
F.
,
Alvarado-Gil
,
J. J.
,
Volz
,
S.
, and
Miyazaki
,
K.
,
2019
, “
Two-Dimensional Phonon Polariton Heat Transport
,”
Nano Lett.
,
19
(
10
), pp.
6924
6930
.10.1021/acs.nanolett.9b02214
229.
Wu
,
Y.
,
Ordonez-Miranda
,
J.
,
Gluchko
,
S.
,
Anufriev
,
R.
,
Meneses
,
D. D. S.
,
Del Campo
,
L.
,
Volz
,
S.
, and
Nomura
,
M.
,
2020
, “
Enhanced Thermal Conduction by Surface Phonon-Polaritons
,”
Sci. Adv.
,
6
(
40
), p.
eabb4461
.10.1126/sciadv.abb4461
230.
Wu
,
Y.
,
Ordonez-Miranda
,
J.
,
Jalabert
,
L.
,
Tachikawa
,
S.
,
Anufriev
,
R.
,
Fujita
,
H.
,
Volz
,
S.
, and
Nomura
,
M.
,
2022
, “
Observation of Heat Transport Mediated by the Propagation Distance of Surface Phonon-Polaritons Over Hundreds of Micrometers
,”
Appl. Phys. Lett.
,
121
(
11
), p.
112203
.10.1063/5.0100506
231.
Pei
,
Y.
,
Chen
,
L.
,
Jeon
,
W.
,
Liu
,
Z.
, and
Chen
,
R.
,
2023
, “
Low-Dimensional Heat Conduction in Surface Phonon Polariton Waveguide
,”
Nat. Commun.
,
14
(
1
), p.
8242
.10.1038/s41467-023-43736-8
232.
Pan
,
Z.
,
Lu
,
G.
,
Li
,
X.
,
McBride
,
J. R.
,
Juneja
,
R.
,
Long
,
M.
,
Lindsay
,
L.
,
Caldwell
,
J. D.
, and
Li
,
D.
,
2023
, “
Remarkable Heat Conduction Mediated by Non-Equilibrium Phonon Polaritons
,”
Nature
,
623
(
7986
), pp.
307
312
.10.1038/s41586-023-06598-0
233.
Li
,
M.
,
Dai
,
L.
, and
Hu
,
Y.
,
2022
, “
Machine Learning for Harnessing Thermal Energy: From Materials Discovery to System Optimization
,”
ACS Energy Lett.
,
7
(
10
), pp.
3204
3226
.10.1021/acsenergylett.2c01836
234.
Zhang
,
L.
, and
Niu
,
Q.
,
2015
, “
Chiral Phonons at High-Symmetry Points in Monolayer Hexagonal Lattices
,”
Phys. Rev. Lett.
,
115
(
11
), p.
115502
.10.1103/PhysRevLett.115.115502
235.
Zhu
,
H.
,
Yi
,
J.
,
Li
,
M.-Y.
,
Xiao
,
J.
,
Zhang
,
L.
,
Yang
,
C.-W.
,
Kaindl
,
R. A.
,
Li
,
L.-J.
,
Wang
,
Y.
, and
Zhang
,
X.
,
2018
, “
Observation of Chiral Phonons
,”
Science
,
359
(
6375
), pp.
579
582
.10.1126/science.aar2711
236.
Baydin
,
A.
,
Hernandez
,
F. G. G.
,
Rodriguez-Vega
,
M.
,
Okazaki
,
A. K.
,
Tay
,
F.
,
Noe
,
G. T.
,
Katayama
,
I.
, et al.,
2022
, “
Magnetic Control of Soft Chiral Phonons in PbTe
,”
Phys. Rev. Lett.
,
128
(
7
), p.
075901
.10.1103/PhysRevLett.128.075901
237.
Süsstrunk
,
R.
, and
Huber
,
S. D.
,
2016
, “
Classification of Topological Phonons in Linear Mechanical Metamaterials
,”
Proc. Natl. Acad. Sci.
,
113
(
33
), pp.
E4767
E4775
.10.1073/pnas.1605462113
238.
Anirban
,
A.
,
2024
, “
Topological Phonons in Graphene
,”
Nat. Rev. Phys.
,
6
, p.
81
.10.1038/s42254-024-00690-8
239.
Xu
,
Y.
,
Vergniory
,
M. G.
,
Ma
,
D.-S.
,
Mañes
,
J. L.
,
Song
,
Z.-D.
,
Bernevig
,
B. A.
,
Regnault
,
N.
, and
Elcoro
,
L.
,
2024
, “
Catalog of Topological Phonon Materials
,”
Science
,
384
(
6696
), p.
eadf8458
.10.1126/science.adf8458
You do not currently have access to this content.