Skip Nav Destination
Issues
November 2006
This article was originally published in
Journal of Heat Transfer
ISSN 0022-1481
EISSN 1528-8943
Research Papers
Micro/Nanoscale Heat Transfer
3-Omega Measurements of Vertically Oriented Carbon Nanotubes on Silicon
J. Heat Transfer. November 2006, 128(11): 1109–1113.
doi: https://doi.org/10.1115/1.2352778
Topics:
Carbon nanotubes
,
Silicon
,
Thermal conductivity
,
Thermal resistance
,
Temperature
In-Plane and Out-Of-Plane Thermal Conductivity of Silicon Thin Films Predicted by Molecular Dynamics
J. Heat Transfer. November 2006, 128(11): 1114–1121.
doi: https://doi.org/10.1115/1.2352781
Topics:
Molecular dynamics
,
Phonons
,
Silicon
,
Temperature
,
Thermal conductivity
,
Thin films
,
Atoms
,
Film thickness
,
Equilibrium (Physics)
,
Boundary-value problems
Natural and Mixed Convection
Turbulent Heat Transfer in an Enclosure With a Horizontal Permeable Plate in the Middle
J. Heat Transfer. November 2006, 128(11): 1122–1129.
doi: https://doi.org/10.1115/1.2352779
Topics:
Cavities
,
Flow (Dynamics)
,
Natural convection
,
Porous materials
,
Turbulence
,
Heat transfer
Rotational Buoyancy Effects on Heat Transfer in Five Different Aspect-Ratio Rectangular Channels With Smooth Walls and Ribbed Walls
J. Heat Transfer. November 2006, 128(11): 1130–1141.
doi: https://doi.org/10.1115/1.2352782
Topics:
Coolants
,
Flow (Dynamics)
,
Heat transfer
,
Rotation
,
Buoyancy
,
Friction
Heat and Mass Transfer
An Analytical Approach to the Heat and Mass Transfer Processes in Counterflow Cooling Towers
J. Heat Transfer. November 2006, 128(11): 1142–1148.
doi: https://doi.org/10.1115/1.2352780
Topics:
Cooling towers
,
Differential equations
,
Heat
,
Mass transfer
,
Temperature
,
Water
,
Evaporation
,
Heat transfer
,
Modeling
,
Approximation
Evaporation, Boiling, and Condensation
A Three-Dimensional Numerical Modeling of Atmospheric Pool Boiling by the Coupled Map Lattice Method
J. Heat Transfer. November 2006, 128(11): 1149–1158.
doi: https://doi.org/10.1115/1.2352785
Topics:
Boiling
,
Bubbles
,
Cavities
,
Nucleation (Physics)
,
Pool boiling
,
Vapors
,
Water
,
Convection
,
Temperature
,
Thermal diffusion
Effect of Surface Orientation on Nucleate Boiling of FC-72 on Porous Graphite
J. Heat Transfer. November 2006, 128(11): 1159–1175.
doi: https://doi.org/10.1115/1.2352783
Topics:
Boiling
,
Copper
,
Critical heat flux
,
Graphite
,
Nucleate boiling
,
Heat flux
Forced Convection
Lattice Boltzmann Method Simulation of Backward-Facing Step Flow With Double Plates Aligned at Angle to Flow Direction
J. Heat Transfer. November 2006, 128(11): 1176–1184.
doi: https://doi.org/10.1115/1.2352786
Thermal Entrance Heat Transfer of an Adiabatically Prepared Fluid With Viscous Dissipation in a Tube With Isothermal Wall
J. Heat Transfer. November 2006, 128(11): 1185–1193.
doi: https://doi.org/10.1115/1.2352784
Topics:
Ducts
,
Energy dissipation
,
Entrance region
,
Fluids
,
Forced convection
,
Temperature
,
Temperature distribution
,
Heat flux
,
Flow (Dynamics)
,
Heating
Porous Media
Self-Consistent Open-Celled Metal Foam Model for Thermal Applications
J. Heat Transfer. November 2006, 128(11): 1194–1203.
doi: https://doi.org/10.1115/1.2352787
Topics:
Density
,
Metal foams
,
Thermal conductivity
,
Shapes
,
Finite element analysis
,
Geometry
,
Magnification
,
Porosity
Technical Briefs
Free Convective Heat and Mass Transfer in a Doubly Stratified Non-Darcy Porous Medium
J. Heat Transfer. November 2006, 128(11): 1204–1212.
doi: https://doi.org/10.1115/1.2352788
Topics:
Boundary layers
,
Buoyancy
,
Heat
,
Mass transfer
,
Porous materials
,
Temperature
,
Flow (Dynamics)
An Experimental Investigation of Heat Transport Capability in a Nanofluid Oscillating Heat Pipe
J. Heat Transfer. November 2006, 128(11): 1213–1216.
doi: https://doi.org/10.1115/1.2352789
Topics:
Heat
,
Heat pipes
,
Nanofluids
,
Nanoparticles
,
Thermal resistance
,
Diamonds
,
Water
A Transient Technique for Measuring the Effective Thermal Conductivity of Saturated Porous Media With a Constant Boundary Heat Flux
J. Heat Transfer. November 2006, 128(11): 1217–1220.
doi: https://doi.org/10.1115/1.2352791
Topics:
Glass
,
Heat flux
,
Porous materials
,
Thermal conductivity
,
Water
,
Steel
,
Transients (Dynamics)
,
Fluids
,
Thermal diffusivity
Technology Review
Thermal-Fluid MEMS Devices: A Decade of Progress and Challenges Ahead
J. Heat Transfer. November 2006, 128(11): 1221–1233.
doi: https://doi.org/10.1115/1.2352792
Topics:
Flow (Dynamics)
,
Fluids
,
Heat transfer
,
Microchannels
,
Microelectromechanical systems
,
Micropumps
,
Microsensors
,
Temperature
,
Heat flux
,
Design