Abstract

Over the past two decades, a considerable amount of work has been done on zirconia-toughened alumina (ZTA) to take advantage of the recognized toughening effect induced by ZrO2. In fabricating customized or complex-shaped ZTA parts, conventional manufacturing processes, including slip casting and powder metallurgy, are regarded as time-consuming and cost-intensive. In response to these problems, directed energy deposition (DED) has been proposed and utilized to fabricate customized ZTA parts with highly flexible features in a shorter cycle time at a lower cost. Investigations have been reported on studying effects of input variables (such as laser power) in DED of ZTA parts, however, there are very limited investigations on effects of the ZrO2 content. In this investigation, the effects of the ZrO2 content on microstructures and mechanical properties of DED-fabricated ZTA parts are studied. Experimental results show that at lower levels of ZrO2 contents (5 wt%, 10 wt%, and 20 wt%), a novel three-dimensional quasi-continuous network (3DQCN) microstructure is tailored, whereas at higher levels of ZrO2 contents (30 wt%, 35 wt%, and 41.5 wt%), eutectic microstructure dominates the whole part. Both the 3DQCN microstructure and the eutectic microstructure are beneficial for toughening ZTA parts. In addition, the 3DQCN microstructure contributes to hardening ZTA parts.

References

1.
De Aza
,
A. H.
,
Chevalier
,
J.
,
Fantozzi
,
G.
,
Schehl
,
M.
, and
Torrecillas
,
R.
,
2002
, “
Crack Growth Resistance of Alumina, Zirconia and Zirconia Toughened Alumina Ceramics for Joint Prostheses
,”
Biomaterial
,
23
(
3
), pp.
937
945
. 10.1016/S0142-9612(01)00206-X
2.
Zhang
,
S.
,
Sun
,
D.
,
Fu
,
Y. Q.
, and
Du
,
H. J.
,
2005
, “
Toughening of Hard Nanostructural Thin Films: A Critical Review
,”
Surf. Coat. Technol.
,
198
(
1
), pp.
2
8
. 10.1016/j.surfcoat.2004.10.020
3.
Li
,
Y. Z.
,
Hu
,
Y. B.
,
Cong
,
W. L.
,
Zhi
,
L.
, and
Guo
,
Z. N.
,
2017
, “
Additive Manufacturing of Alumina Using Laser Engineered net Shaping: Effects of Deposition Variables
,”
Ceram. Int.
,
43
(
10
), pp.
7768
7775
. 10.1016/j.ceramint.2017.03.085
4.
Tang
,
D.
,
Lim
,
H. B.
,
Lee
,
K. J.
,
Lee
,
C. H.
, and
Cho
,
W. S.
,
2012
, “
Evaluation of Mechanical Reliability of Zirconia-Toughened Alumina Composites for Dental Implants
,”
Ceram. Int.
,
38
(
3
), pp.
2429
2436
. 10.1016/j.ceramint.2011.11.009
5.
Bocanegra-Bernal
,
M. H.
, and
De La Torre
,
S. D.
,
2002
, “
Phase Transitions in Zirconium Dioxide and Related Materials for High Performance Engineering Ceramics
,”
J. Mater. Sci.
,
37
(
23
), pp.
4947
4971
. 10.1023/A:1021099308957
6.
Wang
,
J.
, and
Stevens
,
R.
,
1989
, “
Zirconia-toughened Alumina (ZTA) Ceramics
,”
J. Mater. Sci.
,
24
(
10
), pp.
3421
3440
. 10.1007/BF02385721
7.
Hu
,
Y. B.
, and
Cong
,
W. L.
,
2018
, “
A Review on Laser Deposition-Additive Manufacturing of Ceramics and Ceramic Reinforced Metal Matrix Composites
,”
Ceram. Int.
,
44
(
17
), pp.
20599
20612
. 10.1016/j.ceramint.2018.08.083
8.
Mandal
,
N.
,
Doloi
,
B.
, and
Mondal
,
B.
,
2013
, “
Predictive Modeling of Surface Roughness in High Speed Machining of AISI 4340 Steel Using Yttria Stabilized Zirconia Toughened Alumina Turning Insert
,”
Int. J. Refract. Met. Hard Mater.
,
38
, pp.
40
46
. 10.1016/j.ijrmhm.2012.12.007
9.
He
,
X.
,
Zhang
,
Y. Z.
,
Mansell
,
J. P.
, and
Su
,
B.
,
2008
, “
Zirconia Toughened Alumina Ceramic Foams for Potential Bone Graft Applications: Fabrication, Bioactivation, and Cellular Responses
,”
J. Mater. Sci.—Mater. Med.
,
19
(
7
), pp.
2743
2749
. 10.1007/s10856-008-3401-x
10.
Ganesh
,
I.
,
Olhero
,
S. M.
,
Torres
,
P. M.
,
Alves
,
F. J.
, and
Ferreira
,
J. M.
,
2009
, “
Hydrolysis-induced Aqueous Gelcasting for Near-net Shape Forming of ZTA Ceramic Composites
,”
J. Eur. Ceram. Soc.
,
29
(
8
), pp.
1393
1401
. 10.1016/j.jeurceramsoc.2008.08.033
11.
Gutknecht
,
D.
,
Chevalier
,
J.
,
Garnier
,
V.
, and
Fantozzi
,
G.
,
2007
, “
Key Role of Processing to Avoid Low Temperature Ageing in Alumina Zirconia Composites for Orthopaedic Application
,”
J. Eur. Ceram. Soc.
,
27
(
2
), pp.
1547
1552
. 10.1016/j.jeurceramsoc.2006.04.123
12.
Denry
,
I.
, and
Kelly
,
J. R.
,
2008
, “
State of the Art of Zirconia for Dental Applications
,”
Dent. Mater.
,
24
(
3
), pp.
299
307
. 10.1016/j.dental.2007.05.007
13.
Fries
,
R.
, and
Rand
,
B.
,
2006
, “
Slip-Casting and Filter-Pressing
,”
Mater. Sci. Technol.
, pp.
155
187
.
14.
Evans
,
J. R.
,
2005
, “
Injection Moulding
,”
Mater. Sci. Technol
, pp.
268
311
.
15.
Wilkes
,
J.
,
Hagedorn
,
Y. C.
,
Meiners
,
W.
, and
Wissenbach
,
K.
,
2013
, “
Additive Manufacturing of ZrO2-Al2O3 Ceramic Components by Selective Laser Melting
,”
Rapid Prototyp. J.
,
19
(
1
), pp.
51
57
. 10.1108/13552541311292736
16.
Yves-Christian
,
H.
,
Jan
,
W.
,
Wilhelm
,
M.
,
Konrad
,
W.
, and
Reinhart
,
P.
,
2010
, “
Net Shaped High Performance Oxide Ceramic Parts by Selective Laser Melting
,”
Physics Procedia.
,
5
, pp.
587
594
. 10.1016/j.phpro.2010.08.086
17.
Ning
,
F. D.
,
Hu
,
Y. B.
,
Liu
,
Z. C.
,
Wang
,
X. L.
,
Li
,
Y. Z.
, and
Cong
,
W. L.
,
2008
, “
Ultrasonic Vibration-Assisted Laser Engineered Net Shaping of Inconel 718 Parts: Microstructural and Mechanical Characterization
,”
ASME J. Manuf. Sci. Eng.
,
140
(
6
), p.
061012
. 10.1115/1.4039441
18.
Gasser
,
A.
,
Backes
,
G.
,
Kelbassa
,
I.
,
Weisheit
,
A.
, and
Wissenbach
,
K.
,
2010
, “
Laser Additive Manufacturing
,”
Laser Tech. J.
,
7
(
2
), pp.
58
63
. 10.1002/latj.201090029
19.
Du
,
W. C.
,
Ren
,
X. R.
,
Ma
,
C.
, and
Pei
,
Z. J.
,
2019
, “
Ceramic Binder Jetting Additive Manufacturing: Particle Coating for Increasing Powder Sinterability and Part Strength
,”
Mater. Lett.
,
234
, pp.
327
330
. 10.1016/j.matlet.2018.09.118
20.
Griffith
,
M. L.
, and
Halloran
,
J. W.
,
1996
, “
Freeform Fabrication of Ceramics Via Stereolithography
,”
J. Am. Ceram. Soc.
,
79
(
10
), pp.
2601
2608
. 10.1111/j.1151-2916.1996.tb09022.x
21.
Tomov
,
R. I.
,
Krauz
,
M.
,
Jewulski
,
J.
,
Hopkins
,
S. C.
,
Kluczowski
,
J. R.
,
Glowacka
,
D. M.
, and
Glowacki
,
B. A.
,
2010
, “
Direct Ceramic Inkjet Printing of Yttria-Stabilized Zirconia Electrolyte Layers for Anode-Supported Solid Oxide Fuel Cells
,”
J. Power Sources
,
195
(
21
), pp.
7160
7167
. 10.1016/j.jpowsour.2010.05.044
22.
Heros
,
R. J.
,
1998
, “
Ceramic in Total Hip Arthroplasty: History, Mechanical Properties, Clinical Results, and Current Manufacturing State of the art
,”
Semin. Arthroplasty.
,
9
, pp.
114
122
.
23.
Bhushan
,
B.
, and
Li
,
X.
,
2003
, “
Nanomechanical Characterisation of Solid Surfaces and Thin Films
,”
Int. Mater. Rev.
,
48
(
3
), pp.
125
164
. 10.1179/095066003225010227
24.
Hu
,
Y. B.
,
Ning
,
F. D.
,
Wang
,
H.
,
Cong
,
W. L.
, and
Zhao
,
B.
,
2018
, “
Laser Engineered net Shaping of Quasi-Continuous Network Microstructural TiB Reinforced Titanium Matrix Bulk Composites: Microstructure and Wear Performance
,”
Opt. Laser Technol.
,
99
, pp.
174
183
. 10.1016/j.optlastec.2017.08.032
25.
Niu
,
F. Y.
,
Wu
,
D. J.
,
Ma
,
G. Y.
,
Wang
,
J. T.
,
Guo
,
M. H.
, and
Zhang
,
B.
,
2015
, “
Nanosized Microstructure of Al2O3-ZrO2 (Y2O3) Eutectics Fabricated by Laser Engineered Net Shaping
,”
Scr. Mater.
,
95
, pp.
39
41
. 10.1016/j.scriptamat.2014.09.026
26.
Huang
,
Y. J.
,
Zeng
,
X. Y.
,
Hu
,
Q. W.
, and
Zhou
,
S. F.
,
2008
, “
Analysis Model and Experimental Research of Dilution in Laser Induction Hybrid Cladding
,”
J. Appl. Opt.
,
29
(
2
), pp.
248
252
(in Chinese)
.
27.
Hu
,
Y. B.
,
Ning
,
F. D.
,
Cong
,
W. L.
,
Li
,
Y. C.
,
Wang
,
X. L.
, and
Wang
,
H.
,
2018
, “
Ultrasonic Vibration-Assisted Laser Engineered Net Shaping of ZrO2-Al2O3 Bulk Parts: Effects on Crack Suppression, Microstructure, and Mechanical Properties
,”
Ceram. Int.
,
44
(
3
), pp.
2752
2760
. 10.1016/j.ceramint.2017.11.013
28.
Yan
,
S.
,
Wu
,
D. J.
,
Ma
,
G. Y.
,
Niu
,
F. Y.
,
Kang
,
R. K.
, and
Guo
,
D. M.
,
2017
, “
Formation Mechanism and Process Optimization of Nano Al2O3-ZrO2 Eutectic Ceramic Via Laser Engineered Net Shaping (LENS)
,”
Ceram. Int.
,
43
(
17
), pp.
14742
14747
. 10.1016/j.ceramint.2017.07.214
29.
Bridgwater
,
J.
,
1976
, “
Fundamental Powder Mixing Mechanisms
,”
Powder Technol.
,
15
(
2
), pp.
215
236
. 10.1016/0032-5910(76)80051-4
30.
ASTM E112-13
,
2013
,
Standard Test Methods for Determining Average Grain Size
,
ASTM International
,
West Conshohocken, PA
.
31.
Zhilyaev
,
A. P.
,
Kim
,
B. K.
,
Szpunar
,
J. A.
,
Baró
,
M. D.
, and
Langdon
,
T. G.
,
2005
, “
The Microstructural Characteristics of Ultrafine-Grained Nickel
,”
Mater. Sci. Eng., A.
,
391
(
1–2
), pp.
377
389
. 10.1016/j.msea.2004.09.030
32.
Zhao
,
Z. M.
,
Zhang
,
L.
,
Song
,
Y. G.
, and
Wang
,
W. G.
,
2008
, “
Al2O3/ZrO2 (Y2O3) Self-Growing Composites Prepared by Combustion Synthesis Under High Gravity
,”
Scr. Mater.
,
58
(
3
), pp.
207
210
. 10.1016/j.scriptamat.2007.09.051
33.
Li
,
P.
,
Chen
,
I. W.
, and
Penner-Hahn
,
J. E.
,
1994
, “
Effect of Dopants on Zirconia Stabilization–an X-ray Absorption Study: I, Trivalent Dopants
,”
J. Am. Ceram. Soc.
,
77
(
1
), pp.
118
128
. 10.1111/j.1151-2916.1994.tb06964.x
34.
Lebeau
,
T.
,
1994
,
Wetting of Alumina-Based Ceramics by Aluminum Alloys
,
McGill University
,
Montreal
.
35.
Liu
,
Z.
,
Song
,
K.
,
Gao
,
B.
,
Tian
,
T.
,
Yang
,
H. O.
,
Lin
,
X.
, and
Huang
,
W. D.
,
2016
, “
Microstructure and Mechanical Properties of Al2O3/ZrO2 Directionally Solidified Eutectic Ceramic Prepared by Laser 3D Printing
,”
J. Mater. Sci. Technol.
,
32
(
4
), pp.
320
325
. 10.1016/j.jmst.2015.11.017
36.
Su
,
H. J.
,
Zhang
,
J.
,
Tian
,
J. J.
,
Liu
,
L.
, and
Fu
,
H. Z.
,
2008
, “
Preparation and Characterization of Al2O3/Y3Al5O12/ZrO2 Ternary Hypoeutectic in Situ Composites by Laser Rapid Solidification
,”
J. Appl. Phys.
,
104
(
2
), p.
023511
. 10.1063/1.2955768
37.
Chraska
,
T.
,
Neufuss
,
K.
,
Dubský
,
J.
,
Ctibor
,
P.
, and
Rohan
,
P.
,
2008
, “
Fabrication of Bulk Nanocrystalline Alumina-Zirconia Materials
,”
Ceram. Int.
,
34
(
5
), pp.
1229
1236
. 10.1016/j.ceramint.2007.04.001
38.
LLorca
,
J.
, and
Orera
,
V. M.
,
2006
, “
Directionally Solidified Eutectic Ceramic Oxides
,”
Prog. Mater Sci.
,
51
(
6
), pp.
711
809
. 10.1016/j.pmatsci.2005.10.002
39.
Dantzig
,
J. A.
, and
Rappaz
,
M.
,
2009
,
Solidification
,
EPFL Press
,
Lausanne
.
40.
Casellas
,
D.
,
Nagl
,
M. M.
,
Llanes
,
L.
, and
Anglada
,
M.
,
2003
, “
Fracture Toughness of Alumina and ZTA Ceramics: Microstructural Coarsening Effects
,”
J. Mater. Process. Technol.
,
143
, pp.
148
152
. 10.1016/S0924-0136(03)00396-0
41.
Meunier
,
C.
,
Zuo
,
F.
,
Peillon
,
N.
,
Saunier
,
S.
,
Marinel
,
S.
, and
Goeuriot
,
D.
,
2017
, “
In Situ Study on Microwave Sintering of ZTA Ceramic: Effect of ZrO2 Content on Densification, Hardness, and Toughness
,”
J. Am. Ceram. Soc.
,
100
(
3
), pp.
929
936
. 10.1111/jace.14658
42.
Hall
,
E. O.
,
1951
, “
The Deformation and Ageing of Mild Steel: III Discussion of Results
,”
Proc. Phys. Soc. London, Sect. B
,
64
(
9
), pp.
747
753
. 10.1088/0370-1301/64/9/303
43.
Petch
,
N. J.
,
1953
, “
The Cleavage Strength of Polycrystals
,”
J. Iron. Steel Res., Int.
,
174
, pp.
25
28
.
44.
Pelleg
,
J.
,
2014
,
Mechanical Properties of Ceramics (Vol. 213)
,
Springer Science & Business Media
,
Berlin
.
45.
Gupta
,
T. K.
,
Lange
,
F. F.
, and
Bechtold
,
J. H.
,
1978
, “
Effect of Stress-Induced Phase Transformation on the Properties of Polycrystalline Zirconia Containing Metastable Tetragonal Phase
,”
J. Mater. Sci.
,
13
(
7
), pp.
1464
1470
. 10.1007/BF00553200
46.
Kirchner
,
H. P.
,
Gruver
,
R. M.
,
Swain
,
M. V.
, and
Garvie
,
R. C.
,
1981
, “
Crack Branching in Transformation-Toughened Zirconia
,”
J. Am. Ceram. Soc.
,
64
(
9
), pp.
529
533
. 10.1111/j.1151-2916.1981.tb10319.x
You do not currently have access to this content.