Abstract

The new wave of Industry 4.0 is transforming manufacturing factories into data-rich environments. This provides an unprecedented opportunity to feed large amounts of sensing data collected from the physical factory into the construction of digital twin (DT) in cyberspace. However, little has been done to fully utilize the DT technology to improve the smartness and autonomous levels of small and medium-sized manufacturing factories. Indeed, only a small fraction of small and medium-sized manufacturers (SMMs) has considered implementing DT technology. There is an urgent need to exploit the full potential of data analytics and simulation-enabled DTs for advanced manufacturing. Hence, this paper presents the design and development of DT models for simulation optimization of manufacturing process flows. First, we develop a multi-agent simulation model that describes nonlinear and stochastic dynamics among a network of interactive manufacturing things, including customers, machines, automated guided vehicles (AGVs), queues, and jobs. Second, we propose a statistical metamodeling approach to design sequential computer experiments to optimize the utilization of AGV under uncertainty. Third, we construct two new graph models—job flow graph and AGV traveling graph—to track and monitor the real-time performance of manufacturing jobshops. The proposed simulation-enabled DT approach is evaluated and validated with experimental studies for the representation of a real-world manufacturing factory. Experimental results show that the proposed methodology effectively transforms a manufacturing jobshop into a new generation of DT-enabled smart factories. The sequential design of experiments effectively reduces the computation overhead of expensive simulations while optimally scheduling the AGV to achieve production throughput cost-effectively. This research is strongly promised to help SMMs fully utilize big data and DT technology for gaining competitive advantages in the global marketplace.

References

1.
Yang
,
H.
,
Kumara
,
S.
,
Bukkapatnam
,
S. T.
, and
Tsung
,
F.
,
2019
, “
The Internet of Things for Smart Manufacturing: A Review
,”
IISE Trans.
,
51
(
11
), pp.
1190
1216
.
2.
Negri
,
E.
,
Fumagalli
,
L.
, and
Macchi
,
M.
,
2017
, “
A Review of the Roles of Digital Twin in CPS-Based Production Systems
,”
Proc. Manuf.
,
11
, pp.
939
948
.
3.
Cimino
,
C.
,
Negri
,
E.
, and
Fumagalli
,
L.
,
2019
, “
Review of Digital Twin Applications in Manufacturing
,”
Comput. Ind.
,
113
.
4.
Kampe
,
N.
,
2019
, “
Technology-in-Industry Report
,”
Automation Alley.
5.
Mittal
,
S.
,
Khan
,
M. A.
,
Romero
,
D.
, and
Wuest
,
T.
,
2018
, “
A Critical Review of Smart Manufacturing & Industry 4.0 Maturity Models: Implications for Small and Medium-sized Enterprises (SMES)
,”
J. Manuf. Syst.
,
49
, pp.
194
214
.
6.
Leng
,
J.
,
Wang
,
D.
,
Shen
,
W.
,
Li
,
X.
,
Liu
,
Q.
, and
Chen
,
X.
,
2021
, “
Digital Twins-Based Smart Manufacturing System Design in Industry 4.0: A Review
,”
J. Manuf. Syst.
,
60
, pp.
119
137
.
7.
Zhang
,
M.
,
Tao
,
F.
, and
Nee
,
A.
,
2021
, “
Digital Twin Enhanced Dynamic Job-Shop Scheduling
,”
J. Manuf. Syst.
,
58
, pp.
146
156
.
8.
Ye
,
Z.
,
Si
,
S.
,
Yang
,
H.
,
Cai
,
Z.
, and
Zhou
,
F.
,
2021
, “
Machine and Feedstock Interdependence Modeling for Manufacturing Networks Performance Analysis
,”
IEEE Trans. Ind. Inform.
,
18
(
8
), pp.
5067
5076
.
9.
Zhu
,
R.
,
Aqlan
,
F.
,
Zhao
,
R.
, and
Yang
,
H.
,
2022
, “
Sensor-Based Modeling of Problem-Solving in Virtual Reality Manufacturing Systems
,”
Expert Syst. Appl.
,
201
(
117220
).
10.
Mittal
,
U.
,
Yang
,
H.
,
Bukkapatnam
,
S. T.
, and
Barajas
,
L. G.
,
2008
, “
Dynamics and Performance Modeling of Multi-stage Manufacturing Systems Using Nonlinear Stochastic Differential Equations
,”
2008 IEEE International Conference on Automation Science and Engineering
,
Arlington, VA
,
Aug. 23
,
IEEE
, pp.
498
503
.
11.
Yang
,
H.
,
Bukkapatnam
,
S. T.
, and
Barajas
,
L. G.
,
2013
, “
Continuous Flow Modelling of Multistage Assembly Line System Dynamics
,”
Int. J. Comput. Integr. Manuf.
,
26
(
5
), pp.
401
411
.
12.
Resman
,
M.
,
Protner
,
J.
,
Simic
,
M.
, and
Herakovic
,
N.
,
2021
, “
A Five-Step Approach to Planning Data-Driven Digital Twins for Discrete Manufacturing Systems
,”
Appl. Sci.
,
11
(
8
), p.
3639
.
13.
Lidberg
,
S.
,
Aslam
,
T.
,
Pehrsson
,
L.
, and
Ng
,
A. H.
,
2020
, “
Optimizing Real-World Factory Flows Using Aggregated Discrete Event Simulation Modelling
,”
Flexi. Ser. Manuf. J.
,
32
(
4
), pp.
888
912
.
14.
Dorri
,
A.
,
Kanhere
,
S. S.
, and
Jurdak
,
R.
,
2018
, “
Multi-agent Systems: A Survey
,”
IEEE Access
,
6
, pp.
28573
28593
.
15.
Ryu
,
K.
,
Son
,
Y.
, and
Jung
,
M.
,
2003
, “
Modeling and Specifications of Dynamic Agents in Fractal Manufacturing Systems
,”
Comput. Ind.
,
52
(
2
), pp.
161
182
.
16.
Macal
,
C.
, and
North
,
M.
,
2010
, “
Tutorial on Agent-Based Modelling and Simulation
,”
J. Simul.
,
4
(
3
), pp.
151
162
.
17.
Yao
,
X.
, and
Lin
,
Y.
,
2016
, “
Emerging Manufacturing Paradigm Shifts for the Incoming Industrial Revolution
,”
Int. J. Adv. Manuf. Technol.
,
85
(
5
), pp.
1665
1676
.
18.
Kim
,
Y. G.
,
Lee
,
S.
,
Son
,
J.
,
Bae
,
H.
, and
Do Chung
,
B.
,
2020
, “
Multi-agent System and Reinforcement Learning Approach for Distributed Intelligence in a Flexible Smart Manufacturing System
,”
J. Manuf. Syst.
,
57
, pp.
440
450
.
19.
Park
,
K. T.
,
Lee
,
J.
,
Kim
,
H. -J.
, and
Do Noh
,
S.
,
2020
, “
Digital Twin-Based Cyber Physical Production System Architectural Framework for Personalized Production
,”
Int. J. Adv. Manuf. Technol.
,
106
(
5
), pp.
1787
1810
.
20.
Chen
,
G.
,
Wang
,
P.
,
Feng
,
B.
,
Li
,
Y.
, and
Liu
,
D.
,
2020
, “
The Framework Design of Smart Factory in Discrete Manufacturing Industry Based on Cyber-Physical System
,”
Int. J. Computer Integr. Manuf.
,
33
(
1
), pp.
79
101
.
21.
Rolon
,
M.
, and
Martinez
,
E.
,
2012
, “
Agent Learning in Autonomic Manufacturing Execution Systems for Enterprise Networking
,”
Comput. Ind. Eng.
,
63
(
4
), pp.
901
925
.
22.
Huang
,
C.-J.
, and
Liao
,
L.-M.
,
2012
, “
A Multi-agent-based Negotiation Approach for Parallel Machine Scheduling With Multi-objectives in an Electro-Etching Process
,”
Int. J. Prod. Res.
,
50
(
20
), pp.
5719
5733
.
23.
Giordani
,
S.
,
Lujak
,
M.
, and
Martinelli
,
F.
,
2013
, “
A Distributed Multi-agent Production Planning and Scheduling Framework for Mobile Robots
,”
Comput. Ind. Eng.
,
64
(
1
), pp.
19
30
.
24.
Adediran
,
T. V.
, and
Al-Bazi
,
A.
,
2019
, “
Agent-Based Modelling and Heuristic Approach for Solving Complex OEM Flow-Shop Productions Under Customer Disruptions
,”
Computers Ind. Eng.
,
133
, pp.
29
41
.
25.
Huang
,
Z.
,
Kim
,
J.
,
Sadri
,
A.
,
Dowey
,
S.
, and
Dargusch
,
M. S.
,
2019
, “
Industry 4.0: Development of a Multi-agent System for Dynamic Value Stream Mapping in Smes
,”
J. Manuf. Syst.
,
52
, pp.
1
12
.
26.
Yang
,
H.
,
Kan
,
C.
,
Krall
,
A.
, and
Finke
,
D.
,
2020
, “
Network Modeling and Internet of Things for Smart and Connected Health Systems-A Case Study for Smart Heart Health Monitoring and Management
,”
IISE Trans. Healthcare Syst. Eng.
,
10
(
3
), pp.
159
171
.
27.
Kan
,
C.
, and
Yang
,
H.
,
2017
, “
Dynamic Network Monitoring and Control of In Situ Image Profiles From Ultraprecision Machining and Biomanufacturing Processes
,”
Q. Reliab. Eng. Int.
,
33
(
8
), pp.
2003
2022
.
28.
Yang
,
H.
, and
Liu
,
G.
,
2013
, “
Self-Organized Topology of Recurrence-Based Complex Networks
,”
Chaos: Interdiscip. J. Nonlinear Sci.
,
23
(
4
), p.
043116
.
29.
Liu
,
R.
,
Xie
,
X.
,
Yu
,
K.
, and
Hu
,
Q.
,
2018
, “
A Survey on Simulation Optimization for the Manufacturing System Operation
,”
Int. J. Modell. Simul.
,
38
(
2
), pp.
116
127
.
30.
Du
,
D.
,
Yang
,
H.
,
Ednie
,
A. R.
, and
Bennett
,
E. S.
,
2015
, “
Statistical Metamodeling and Sequential Design of Computer Experiments to Model Glyco-Altered Gating of Sodium Channels in Cardiac Myocytes
,”
IEEE J. Biomed. Health Inform.
,
20
(
5
), pp.
1439
1452
.
31.
Kan
,
C.
,
Yang
,
H.
, and
Kumara
,
S.
,
2018
, “
Parallel Computing and Network Analytics for Fast Industrial Internet-of-Things (IIOT) Machine Information Processing and Condition Monitoring
,”
J. Manuf. Syst.
,
46
, pp.
282
293
.
32.
Jones
,
D. R.
,
2001
, “
A Taxonomy of Global Optimization Methods Based on Response Surfaces
,”
J. Global Optim.
,
21
(
4
), pp.
345
383
.
33.
The Pennsylvania State University
,
2023
, “
Factory for Advanced Manufacturing Education Lab
., https://www.ime.psu.edu/research/facilities-and-labs/fame.aspx.
34.
Joseph
,
V. R.
,
Gul
,
E.
, and
Ba
,
S.
,
2015
, “
Maximum Projection Designs for Computer Experiments
,”
Biometrika
,
102
(
2
), pp.
371
380
.
You do not currently have access to this content.