Abstract

Electric vehicle production is subjected to high manufacturing cost and environmental impact. Disassembling and remanufacturing the lithium-ion power packs can highly promote electric vehicle market penetration by procuring and regrouping reusable modules as stationary energy storage devices and cut life-cycle cost and environmental impact. Disassembly efficiency is crucial for battery remanufacturing companies in reverse supply chains. However, disassembly planning suffers from high computational complexity and inferior solutions. This paper developed a multi-objective mathematical model and presented a novel hybrid genetic-firework algorithm based on the precedence graph for obtaining solutions to disassemble the electric vehicle power pack into module levels in an efficient manner. The objectives for the model include not only smoothness of working stations, cycle time, and economic returns, but also consider operation safety and energy consumption. The proposed hybrid algorithm explored the performance of the novel solution searching mechanism of combining the firework and genetic algorithms. The proposed approach is compared with the commonly used multi-objective evolutionary algorithms in the literature, showing its feasibility and effectiveness.

References

1.
Gu
,
X.
,
Zhou
,
L.
,
Huang
,
H.
,
Shi
,
X.
, and
Ieromonachou
,
P.
,
2021
, “
Electric Vehicle Battery Secondary Use Under Government Subsidy: A Closed-Loop Supply Chain Perspective
,”
Int. J. Prod. Econ.
,
234
, pp.
108035
108049
.
2.
Alfaro-Algaba
,
M.
, and
Ramirez
,
F. J.
,
2020
, “
Techno-economic and Environmental Disassembly Planning of Lithium-Ion Electric Vehicle Battery Packs for Remanufacturing
,”
Resour. Conserv. Recycl.
,
154
, pp.
104461
104475
.
3.
Fan
,
E.
,
Li
,
L.
,
Wang
,
Z.
,
Lin
,
J.
,
Huang
,
Y.
,
Yao
,
Y.
,
Chen
,
R.
, and
Wu
,
F.
,
2020
, “
Sustainable Recycling Technology for Li-Ion Batteries and Beyond: Challenges and Future Prospects
,”
Chem. Rev.
,
120
(
14
), pp.
7020
7063
.
4.
van Velzen
,
A.
,
Annema
,
J. A.
,
van de Kaa
,
G.
, and
van Wee
,
B.
,
2019
, “
Proposing a More Comprehensive Future Total Cost of Ownership Estimation Framework for Electric Vehicles
,”
Energy Policy
,
129
, pp.
1034
1046
.
5.
Ortegon
,
K.
,
Nies
,
L. F.
, and
Sutherland
,
J. W.
,
2014
, “
The Impact of Maintenance and Technology Change on Remanufacturing as a Recovery Alternative for Used Wind Turbines
,”
Procedia CIRP
,
15
, pp.
182
188
.
6.
Xu
,
X.
,
Hu
,
W.
,
Liu
,
W.
,
Wang
,
D.
,
Huang
,
Q.
, and
Chen
,
Z.
,
2021
, “
Study on the Economic Benefits of Retired Electric Vehicle Batteries Participating in the Electricity Markets
,”
J. Cleaner Prod.
,
286
(
1
), pp.
125414
125452
.
7.
Tang
,
Y.
,
Zhou
,
M. C.
,
Zussman
,
E.
, and
Caudill
,
R.
,
2002
, “
Disassembly Modeling, Planning, and Application
,”
J. Manuf. Syst.
,
21
(
3
), pp.
200
217
.
8.
Tian
,
G.
,
Zhou
,
M. C.
, and
Jiangwei
,
C.
,
2013
, “
A Chance Constrained Programming Approach to Determine the Optimal Disassembly Sequence
,”
IEEE Trans. Autom. Sci. Eng.
,
10
(
4
), pp.
1004
1013
.
9.
Marconi
,
M.
,
Palmieri
,
G.
,
Callegari
,
M.
, and
Germani
,
M.
,
2019
, “
Feasibility Study and Design of an Automatic System for Electronic Components Disassembly
,”
ASME J. Manuf. Sci. Eng.
,
141
(
2
), p.
021011
.
10.
Hu
,
Y.
, and
Ameta
,
G.
,
2019
, “
A Charts-Based Approach to Estimate Disassembly Time: Hypothesis, Model and Validation
,”
ASME J. Manuf. Sci. Eng.
,
141
(
2
), p.
021009
.
11.
Wang
,
Y.
,
Mendis
,
G.
,
Peng
,
S.
, and
Sutherland
,
J.
,
2019
, “
Component-Oriented Reassembly in Remanufacturing Systems: Managing Uncertainty and Satisfying Customer Needs
,”
ASME J. Manuf. Sci. Eng.
,
141
(
2
), p.
021005
.
12.
Ilgin
,
M. A.
,
2019
, “
A DEMATEL-Based Disassembly Line Balancing Heuristic
,”
ASME J. Manuf. Sci. Eng.
,
141
(
2
), p.
021002
.
13.
Sutherland
,
J. W.
,
Skerlos
,
S. J.
,
Haapala
,
K. R.
,
Cooper
,
D.
,
Zhao
,
F.
, and
Huang
,
A.
,
2020
, “
Industrial Sustainability: Reviewing the Past and Envisioning the Future
,”
ASME J. Manuf. Sci. Eng.
142
(
11
), p.
110806
.
14.
Lambert
,
A. J. D.
, and
Gupta
,
S. M.
,
2008
, “
Methods for Optimum and Near Optimum Disassembly Sequencing
,”
Int. J. Prod. Res.
,
46
(
11
), pp.
2845
2865
.
15.
Liao
,
H.
,
Chen
,
Y.
,
Hu
,
B.
, and
Behdad
,
S.
,
2023
, “
Optimization-Based Disassembly Sequence Planning Under Uncertainty for Human–Robot Collaboration
,”
ASME J. Mech. Des.
,
145
(
2
), p.
022001
.
16.
Lee
,
M.-L.
,
Behdad
,
S.
,
Liang
,
X.
, and
Zheng
,
M.
,
2022
, “
Task Allocation and Planning for Product Disassembly With Human-Robot Collaboration
,”
Rob. Comput. Integr. Manuf.
,
76
(
2
), p.
102306
.
17.
Laili
,
Y.
,
Li
,
Y.
,
Fang
,
Y.
,
Pham
,
D. T.
, and
Zhang
,
L.
,
2020
, “
Model Review and Algorithm Comparison on Multi-objective Disassembly Line Balancing
,”
J. Manuf. Syst.
,
56
(
1
), pp.
484
500
.
18.
Rickli
,
J.
, and
Camelio
,
J. A.
,
2013
, “
Multi-Objective Partial Disassembly Optimization Based on Sequence Feasibility
,”
J. Manuf. Syst.
,
2013
(
1
), pp.
281
293
.
19.
Wang
,
Y.
,
Huang
,
A.
,
Quigley
,
C. A.
,
Li
,
L.
, and
Sutherland
,
J. W.
,
2020
, “
Tolerance Allocation: Balancing Quality, Cost, and Waste Through Production Rate Optimization
,”
J. Cleaner Prod.
,
2020
(
285
), p.
124837
.
20.
Ren
,
Y.
,
Jin
,
H.
,
Zhao
,
F.
,
Qu
,
T.
,
Meng
,
L.
,
Zhang
,
C.
,
Zhang
,
B.
,
Wang
,
G.
, and
Sutherland
,
J. W.
,
2020
, “
A Multiobjective Disassembly Planning for Value Recovery and Energy Conservation From End-of-Life Products
,”
IEEE Trans. Autom. Sci. Eng.
,
99
(
2
), pp.
1
13
.
21.
Nelson
,
P.
,
Santini
,
D.
, and
Barnes
,
J.
,
2009
, “
Factors Determining the Manufacturing Costs of Lithium-Ion Batteries for PHEVs
,”
World Electr. Veh. J.
,
3
(
3
), pp.
457
468
.
22.
Hannan
,
M. A.
,
Hoque
,
M. M.
,
Hussain
,
A.
,
Yusof
,
Y.
, and
Ker
,
P. J.
,
2018
, “
State-of-the-Art and Energy Management System of Lithium-Ion Batteries in Electric Vehicle Applications: Issues and Recommendations
,”
IEEE Access
,
6
, pp.
19362
19378
.
23.
Heymans
,
C.
,
Walker
,
S. B.
,
Young
,
S. B.
, and
Fowler
,
M.
,
2014
, “
Economic Analysis of Second Use Electric Vehicle Batteries for Residential Energy Storage and Load-Levelling
,”
Energy Policy
,
71
, pp.
22
30
.
24.
Bobba
,
S.
,
Podias
,
A.
,
Di Persio
,
F.
,
Messagie
,
M.
,
Tecchio
,
P.
,
Cusenza
,
M. A.
,
Eynard
,
U.
,
Mathieux
,
F.
, and
Pfrang
,
A.
,
2018
, “
Sustainability Assessment of Second Life Application of Automotive Batteries (SASLAB) JRC Exploratory Research (2016-2017): Final Technical Report, August 2018
,”
Luxembourg: Publications Office
,
Luxembourg
.
25.
Zhou
,
X.-Y.
,
Zou
,
Y.-L.
,
Zhao
,
G.-J.
, and
Yang
,
J.
,
2013
, “
Cycle Life Prediction and Match Detection in Retired Electric Vehicle Batteries
,”
Trans. Nonferrous Met. Soc. China
,
23
(
10
), pp.
3040
3045
.
26.
Lai
,
X.
,
Qiao
,
D.
,
Zheng
,
Y.
, and
Yi
,
W.
,
2018
, “
A Novel Screening Method Based on a Partially Discharging Curve Using a Genetic Algorithm and Back-Propagation Model for the Cascade Utilization of Retired Lithium-Ion Batteries
,”
Electronics
,
7
(
12
), pp.
399
413
.
27.
Zhou
,
Z.
,
Liu
,
J.
,
Pham
,
D. T.
,
Xu
,
W.
,
Ramirez
,
F. J.
,
Ji
,
C.
, and
Liu
,
Q.
,
2018
, “
Disassembly Sequence Planning: Recent Developments and Future Trends
,”
Proc. Inst. Mech. Eng. B
,
233
(
5
), pp.
1450
1471
.
28.
Behdad
,
S.
,
Kwak
,
M.
,
Kim
,
H.
, and
Thurston
,
D.
,
2010
, “
Simultaneous Selective Disassembly and End-of-Life Decision Making for Multiple Products That Share Disassembly Operations
,”
ASME J. Mech. Des.
,
132
(
4
), p.
041002
.
29.
Wang
,
K.
,
Li
,
X.
,
Gao
,
L.
,
Li
,
P.
, and
Sutherland
,
J. W.
,
2022
, “
A Discrete Artificial Bee Colony Algorithm for Multiobjective Disassembly Line Balancing of End-of-Life Products
,”
IEEE Trans. Cybern.
,
52
(
8
), pp.
7415
7426
.
30.
McGovern
,
S. M.
, and
Gupta
,
S. M.
,
2007
, “
A Balancing Method and Genetic Algorithm for Disassembly Line Balancing
,”
Eur. J. Oper. Res.
,
179
(
3
), pp.
692
708
.
31.
Liu
,
J.
, and
Yong
,
W.
,
2007
, “
Fuzzy Analytical Hierarchy Process-Based Assembly Unit Partition for Complex Products
,”
Proceedings of the ASME 2007 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Las Vegas, NV
,
Sept. 4–7
, pp.
121
128
.
32.
Ren
,
Y.
,
Zhang
,
C.
,
Zhao
,
F.
,
Tian
,
G.
,
Lin
,
W.
,
Meng
,
L.
, and
Li
,
H.
,
2018
, “
Disassembly Line Balancing Problem Using Interdependent Weights-Based Multi-criteria Decision Making and 2-Optimal Algorithm
,”
J. Cleaner Prod.
,
174
(
10
), pp.
1475
1486
.
33.
Hui
,
W.
,
Dong
,
X.
, and
Guanghong
,
D.
,
2008
, “
A Genetic Algorithm for Product Disassembly Sequence Planning
,”
Neurocomputing
,
71
(
13–15
), pp.
2720
2726
.
34.
Shan
,
H.
,
Li
,
S.
,
Huang
,
J.
,
Gao
,
Z.
, and
Li
,
W.
, “
Ant Colony Optimization Algorithm-Based Disassembly Sequence Planning
,”
Proceedings of the 2007 International Conference on Mechatronics and Automation
,
Harbin, China
,
Aug. 5–8
, pp.
867
872
.
35.
Azab
,
A.
,
Ziout
,
A.
, and
Elmaraghy
,
W.
,
2011
, “
Modeling and Optimization for Disassembly Planning
,”
Jordan J. Mech. Ind. Eng.
,
5
, pp.
1
8
.
36.
Alshibli
,
M.
,
El Sayed
,
A.
,
Kongar
,
E.
,
Sobh
,
T. M.
, and
Gupta
,
S. M.
,
2016
, “
Disassembly Sequencing Using Tabu Search
,”
J. Intell. Rob. Syst.
,
82
(
1
), pp.
69
79
.
37.
Kalayci
,
C. B.
, and
Gupta
,
S. M.
,
2013
, “
Artificial Bee Colony Algorithm for Solving Sequence-Dependent Disassembly Line Balancing Problem
,”
Expert Syst. Appl.
,
40
(
18
), pp.
7231
7241
.
38.
Tseng
,
Y.-J.
,
Yu
,
F.-Y.
, and
Huang
,
F.-Y. I.
,
2011
, “
A Green Assembly Sequence Planning Model With a Closed-Loop Assembly and Disassembly Sequence Planning Using a Particle Swarm Optimization Method
,”
Int. J. Adv. Manuf. Technol.
,
57
(
9–12
), pp.
1183
1197
.
39.
Huang
,
J.
,
Esmaeilian
,
B.
, and
Behdad
,
S.
,
2015
, “
Multi-Purpose Disassembly Sequence Planning
,”
the ASME International Design Engineering Technical Conferences & Computers & Information in Engineering Conference
,
Boston, MA
,
Aug. 2–5
, pp.
1
9
.
40.
Zhang
,
L.
,
Zhao
,
X.
,
Ke
,
Q.
,
Dong
,
W.
, and
Zhong
,
Y.
,
2021
, “
Disassembly Line Balancing Optimization Method for High Efficiency and Low Carbon Emission
,”
Int. J. Precis. Eng. Manuf. - Green Technol.
,
8
(
1
), pp.
233
247
.
41.
Gen
,
M.
, and
Cheng
,
R.
,
2005
,
Foundations of Genetic Algorithms
,
Springer
,
Berlin/Heidelberg
.
42.
Hwang
,
R.
, and
Katayama
,
H.
,
2009
, “
Uniform Workload Assignments for Assembly Line by GA-Based Amelioration Approach
,”
Int. J. Prod. Res.
,
48
(
7
), pp.
1857
1871
.
43.
Tan
,
Y.
,
2015
,
Fireworks Algorithm: A Novel Swarm Intelligence Optimization Method
,
Springer Publishing Company, Incorporated
,
Berlin/Heidelberg
.
44.
Zheng
,
Y.-J.
,
Song
,
Q.
, and
Chen
,
S.-Y.
,
2013
, “
Multiobjective Fireworks Optimization for Variable-Rate Fertilization in Oil Crop Production
,”
Appl. Soft Comput.
,
13
(
11
), pp.
4253
4263
.
45.
Zaenudin
,
E.
, and
Kistijantoro
,
A. I.
,
2016
, “
pSPEA2: Optimization Fitness and Distance Calculations for Improving Strength Pareto Evolutionary Algorithm 2 (SPEA2)
,”
2016 International Conference on Information Technology Systems and Innovation (ICITSI)
,
Bandung, Indonesia
,
Oct. 24–27
.
46.
Xu
,
Y.
,
Yao
,
B.
, and
Pham
,
D. T.
,
2020
, “
Research on Intelligent Optimization Algorithm for Multi-Objective Disassembly Line Balancing Problem
,”
Proceedings of the ASME 2020 15th International Manufacturing Science and Engineering Conference
,
Online
,
Sept. 3
,
p. V002T07A02
.
47.
McDougall
,
R.
, and
Nokleby
,
S.
,
2009
, “
On the Application of Multi-Objective Parallel Asynchronous Particle Swarm Optimization to Engineering Design Problems
,”
The ASME 2009 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference
,
San Diego, CA
,
Aug. 30–Sept. 2
.
48.
Li
,
M.
,
Liu
,
X.
, and
Wang
,
K.
,
2013
, “
IPESA-II: Improved Pareto Envelope-Based Selection Algorithm II
,”
Proceedings of the 7th International Conference on Evolutionary Multi-criterion Optimization
,
Sheffield, UK
,
Mar. 19–22
, pp.
143
155
.
49.
Li
,
K.
,
Wang
,
R.
,
Zhang
,
T.
, and
Ishibuchi
,
H.
,
2018
, “
Evolutionary Many-Objective Optimization: A Comparative Study of the State-of-the-Art
,”
IEEE Access
,
6
, pp.
26194
26214
.
You do not currently have access to this content.