Abstract

To reveal the material removal mechanism of silicon carbide fiber reinforced silicon carbide ceramic matrix (SiCf/SiC) composites during the ultrasonic vibration helical grinding (UVHG) of hole-making process, a hole-making experiment of UVHG was conducted, and the contact behavior between a grain and different components in the SiCf/SiC was analyzed. The evaluation index of the hole wall quality Cw which comprehensively considers the overall level and local defects of surface quality was proposed, while the evaluation index of the hole exit quality Ce which comprehensively considers the area and depth of edge chipping was proposed too. The results show that the periodic changes of the fiber cutting angle θ will lead to different fracture mechanisms of the fibers and the interfaces, so the surface topography will change regularly. The brittle fracture of the matrixes under different process parameters is different, so the surface topography is different. The quality evaluation indexes Cw and Ce are highly reliable. Within the experimental parameters, selecting a smaller pitch, a smaller helical feed rate, and an appropriate ultrasonic amplitude can obtain better hole-making quality.

References

1.
Morscher
,
G. N.
, and
Cawley
,
J. D.
,
2002
, “
Intermediate Temperature Strength Degradation in SiC/SiC Composites
,”
J. Eur. Ceram. Soc.
,
22
(
14–15
), pp.
2777
2787
.
2.
Naslain
,
R.
,
2004
, “
Design, Preparation and Properties of Non-Oxide CMCs for Application in Engines and Nuclear Reactors: An Overview
,”
Compos. Sci. Technol.
,
64
(
2
), pp.
155
170
.
3.
Qu
,
S. S.
,
Gong
,
Y. D.
,
Yang
,
Y. Y.
, and
Xu
,
Y. C.
,
2020
, “
Mechanical Model and Removal Mechanism of Unidirectional Carbon Fibre-Reinforced Ceramic Composites
,”
Int. J. Mech. Sci.
,
173
, p.
105465
.
4.
Hocheng
,
H.
, and
Tsao
,
C. C.
,
2005
, “
The Path Towards Delamination-Free Drilling of Composite Materials
,”
J. Mater. Process. Technol.
,
167
(
2–3
), pp.
251
264
.
5.
Diaz
,
O. G.
,
Axinte
,
D. A.
,
Butler-Smith
,
P.
, and
Novovic
,
D.
,
2019
, “
On Understanding the Microstructure of SiC/SiC Ceramic Matrix Composites (CMCs) After a Material Removal Process
,”
Mat. Sci. Eng. A-Struct.
,
743
, pp.
1
11
.
6.
Ding
,
K.
,
Fu
,
Y. C.
,
Su
,
H. H.
,
Chen
,
Y.
,
Yu
,
X. Z.
, and
Ding
,
G. Z.
,
2014
, “
Experimental Studies on Drilling Tool Load and Machining Quality of C/SiC Composites in Rotary Ultrasonic Machining
,”
J. Mater. Process. Technol.
,
214
(
12
), pp.
2900
2907
.
7.
Du
,
J. G.
,
Zhang
,
H. Z.
,
Geng
,
Y. M.
,
Ming
,
W. Y.
,
He
,
W. B.
,
Ma
,
J.
,
Cao
,
Y.
,
Li
,
X. K.
, and
Liu
,
K.
,
2019
, “
A Review on Machining of Carbon Fiber Reinforced Ceramic Matrix Composites
,”
Ceram. Int.
,
45
(
15
), pp.
18155
18166
.
8.
An
,
Q. L.
,
Chen
,
J.
,
Ming
,
W. W.
, and
Chen
,
M.
,
2021
, “
Machining of SiC Ceramic Matrix Composites: A Review
,”
Chin. J. Aeronaut.
,
34
(
4
), pp.
540
567
.
9.
Wang
,
J. J.
,
Feng
,
P. F.
,
Zheng
,
J. Z.
, and
Zhang
,
J. F.
,
2016
, “
Improving Hole Exit Quality in Rotary Ultrasonic Machining of Ceramic Matrix Composites Using a Compound Step-Taper Drill
,”
Ceram. Int.
,
42
(
12
), pp.
13387
13394
.
10.
Feng
,
P. F.
,
Wang
,
J. J.
,
Zhang
,
J. F.
, and
Zheng
,
J. Z.
,
2017
, “
Drilling Induced Tearing Defects in Rotary Ultrasonic Machining of C/SiC Composites
,”
Ceram. Int.
,
43
(
1
), pp.
791
799
.
11.
Chen
,
J.
,
An
,
Q. L.
,
Ming
,
W. W.
, and
Chen
,
M.
,
2019
, “
Hole Exit Quality and Machined Surface Integrity of 2D C-f/SiC Composites Drilled by PCD Tools
,”
J. Eur. Ceram. Soc.
,
39
(
14
), pp.
4000
4010
.
12.
Li
,
Z. C.
,
Jiao
,
Y.
,
Deines
,
T. W.
,
Pei
,
Z. J.
, and
Treadwell
,
C.
,
2005
, “
Rotary Ultrasonic Machining of Ceramic Matrix Composites: Feasibility Study and Designed Experiments
,”
Int. J. Mach. Tool. Manuf.
,
45
(
12–13
), pp.
1402
1411
.
13.
Chen
,
Y. R.
,
Su
,
H. H.
,
Fu
,
Y. C.
,
He
,
J. Y.
, and
Zhang
,
W.
,
2018
, “
Experimental Study on Ultrasonic Vibration-Assisted Dry Drilling of SiC_f/SiC Ceramic Matrix Composites
,”
Aeron Manuf. Technol.
,
61
(
21
), pp.
47
51
.
14.
Wang
,
J. J.
,
Zhang
,
J. F.
,
Feng
,
P. F.
,
Guo
,
P.
, and
Zhang
,
Q. L.
,
2018
, “
Feasibility Study of Longitudinal-Torsional-Coupled Rotary Ultrasonic Machining of Brittle Material
,”
ASME J. Manuf. Sci. Eng.
,
140
(
5
), p.
051008
.
15.
Pereira
,
R.
,
Brandao
,
L. C.
,
de Paiva
,
A. P.
,
Ferreira
,
J. R.
, and
Davim
,
J. P.
,
2017
, “
A Review of Helical Milling Process
,”
Int. J. Mach. Tool Manuf.
,
120
, pp.
27
48
.
16.
Dong
,
Z. G.
,
Gao
,
Y.
,
Kang
,
R. K.
,
Yang
,
G. L.
, and
Bao
,
Y.
,
2021
, “
Study on Aperture Deviation of Titanium Alloy Spiral Milling Hole
,”
Acta Aeron. Astron. Sin.
,
42
(
3
), pp.
414
422
.
17.
Lin
,
J. J.
,
Wei
,
X.
,
Yang
,
Y. H.
, and
Wang
,
Y. C.
,
2020
, “
Research on the Surface Quality of Holes Made by Longitudinal-Torsional Composite Ultrasonic Vibration Spiral Grinding of Engineering Ceramics
,”
J. Mech. Elec. Eng.
,
37
(
7
), pp.
806
810
.
18.
Feng
,
H. R.
,
Xiang
,
D. H.
,
Wu
,
B.
, and
Zhao
,
B.
,
2019
, “
Ultrasonic Vibration-Assisted Grinding of Blind Holes and Internal Threads in Cemented Carbides
,”
Int. J. Adv. Manuf. Technol.
,
104
(
1–4
), pp.
1357
1367
.
19.
Wang
,
Q.
,
Wu
,
Y. B.
,
Li
,
Y. G.
,
Lu
,
D.
, and
Bitoh
,
T.
,
2019
, “
Proposal of a Tilted Helical Milling Technique for High-Quality Hole Drilling of CFRP: Analysis of Hole Surface Finish
,”
Int. J. Adv. Manuf. Technol.
,
101
(
1–4
), pp.
1041
1049
.
20.
Geng
,
D. X.
,
Teng
,
Y. D.
,
Liu
,
Y. H.
,
Shao
,
Z. Y.
,
Jiang
,
X. G.
, and
Zhang
,
D. Y.
,
2019
, “
Experimental Study on Drilling Load and Hole Quality During Rotary Ultrasonic Helical Machining of Small-Diameter CFRP Holes
,”
J. Mater. Process. Technol.
,
270
, pp.
195
205
.
21.
Zhang
,
H. T.
,
Bao
,
Y.
,
Yang
,
F.
,
Sun
,
H. Q.
,
Dong
,
Z. G.
, and
Kang
,
R. K.
,
2022
, “
Ultrasonic-Assisted Spiral Grinding of SiCf/SiC Ceramic Matrix Composites
,”
Diam. Abra. Eng.
,
42
(
1
), pp.
81
87
.
22.
Dong
,
Z. G.
,
Zhang
,
H. T.
,
Kang
,
R. K.
,
Ran
,
Y. C.
, and
Bao
,
Y.
,
2022
, “
Mechanical Modeling of Ultrasonic Vibration Helical Grinding of SiCf/SiC Composites
,”
Int. J. Mech. Sci.
,
234
, p.
107701
.
23.
Arai
,
Y.
,
Inoue
,
R.
,
Goto
,
K.
, and
Kogo
,
Y.
,
2019
, “
Carbon Fiber Reinforced Ultra-High Temperature Ceramic Matrix Composites: A Review
,”
Ceram. Int.
,
45
(
12
), pp.
14481
14489
.
24.
Wei
,
J. H.
,
Wang
,
H. J.
,
Lin
,
B.
,
Sui
,
T. Y.
,
Zhao
,
F. F.
, and
Fang
,
S.
,
2019
, “
A Force Model in Single Grain Grinding of Long Fiber Reinforced Woven Composite
,”
Int. J. Adv. Manuf. Technol.
,
100
(
1–4
), pp.
541
552
.
25.
Yan
,
L.
,
Rong
,
Y. M.
,
Jiang
,
F.
, and
Zhou
,
Z. X.
,
2011
, “
Three-Dimension Surface Characterization of Grinding Wheel Using White Light Interferometer
,”
Int. J. Adv. Manuf. Technol.
,
55
(
1–4
), pp.
133
141
.
26.
Persson
,
B.
,
2014
, “
On the Fractal Dimension of Rough Surfaces
,”
Tribol. Lett.
,
54
(
1
), pp.
99
106
.
27.
Majumdar
,
A.
, and
Tien
,
C. L.
,
1990
, “
Fractal Characterization and Simulation of Rough Surfaces
,”
Wear
,
136
(
2
), pp.
313
327
.
28.
Brown
,
C. A.
,
Charles
,
P. D.
,
Johnsen
,
W. A.
, and
Chesters
,
S.
,
1993
, “
Fractal Analysis of Topographic Data by the Patchwork Method
,”
Wear
,
161
(
1–2
), pp.
61
67
.
29.
Stark
,
G. A.
, and
Moon
,
K. S.
,
1999
, “
Modeling Surface Texture in the Peripheral Milling Process Using Neural Network, Spline, and Fractal Methods With Evidence of Chaos
,”
ASME J. Manuf. Sci. Eng.
,
121
(
2
), pp.
251
256
.
30.
Cao
,
H. J.
,
Liu
,
L.
,
Wu
,
B.
,
Gao
,
Y.
, and
Qu
,
D.
,
2021
, “
Process Optimization of High-Speed Dry Milling UD-CF/PEEK Laminates Using GA-BP Neural Network
,”
Composites Part B
,
221
, p.
109034
.
31.
Zheng
,
W.
,
Zhou
,
M.
, and
Zhou
,
L.
,
2016
, “
3D Fractal Investigation on Ultrasonic Vibration Assisted End Grinding Surface of SiCp/Al Composites
,”
2016 International Conference on Design, Mechanical and Material Engineering
,
Auckland, New Zealand
,
Sept. 8–10
, p.
82
.
32.
Fernández-Martínez
,
M.
,
Guirao
,
J.
,
Sánchez-Granero
,
M. A.
, and
Segovia
,
J.
,
2019
,
Fractal Dimension for Fractal Structures: With Applications to Finance
,
Springer Nature
,
Cham
.
33.
Sarkar
,
N.
, and
Chaudhuri
,
B. B.
,
1994
, “
An Efficient Differential Box-Counting Approach to Compute Fractal Dimension of Image
,”
IEEE Trans. Syst. Man Cybern. Syst.
,
24
(
1
), pp.
115
120
.
You do not currently have access to this content.