Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

Reconfigurability in manufacturing signifies a system's capacity to promptly adapt to evolving needs. This adaptability is critical for markets to maintain operations during unexpected disruptions, including weather anomalies, cyber-attacks, and physical obstructions. Concurrently, the concept of a circular economy is gaining popularity in manufacturing to mitigate waste and optimize resource utilization. Circular economy principles aim to reduce environmental impacts while maximizing economic benefits by emphasizing the reuse of goods and resource byproducts. The nexus between reconfigurability and the circular economy stems from their shared pursuit of sustainability and resilience. Interestingly, biological ecosystems also exhibit these traits, showcasing exceptional adaptability to disturbances alongside the ability to effectively utilize available resources during normal operations. This study explores various manufacturing system configurations to assess both their adaptability and connection to circular economy principles. Forty-four configurations are categorized based on layout (e.g., job shop, flow line, cellular) and analyzed using convertibility, cyclicity, and degree of system order metrics. A significant positive correlation (R2 = 0.655) is found between high convertibility and ecologically similar levels of structural cycling, suggesting that effective resource utilization supports adaptability in manufacturing systems. Furthermore, this paper proposes the existence of a possible “window of vitality” for cyclicity, as it demonstrates a significant correlation (R2 = 0.855) between the degree of system order and cyclicity. Identifying systems that strike a balance between redundancy, efficiency, convertibility, and cyclicity can aid manufacturing system designers and decision-makers in making choices that address increasing requirements for both sustainability and resilience.

References

1.
Wang
,
B.
,
2018
, “
The Future of Manufacturing: A New Perspective
,”
Engineering
,
4
(
5
), pp.
722
728
.
2.
Hassan
,
H.
,
Payne
,
E.
, and
Layton
,
A.
,
2023
, “
Quantifying the Sustainability and Robustness of Manufacturing Systems Using Energy and Ecological Network Analyses
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Boston, MA
,
Aug. 20–23
, pp.
1
9
.
3.
Setchi
,
R. M.
, and
Lagos
,
N.
,
2004
, “
Reconfigurability and Reconfigurable Manufacturing Systems: State-of-the-Art Review
,”
2nd IEEE International Conference on Industrial Informatics, 2004. INDIN‘04
,
Berlin, Germany
,
June 24–26
, pp.
529
535
.
4.
ElMaraghy
,
H.
,
Monostori
,
L.
,
Schuh
,
G.
, and
ElMaraghy
,
W.
,
2021
, “
Evolution and Future of Manufacturing Systems
,”
CIRP Ann.
,
70
(
2
), pp.
635
658
.
5.
Phuyal
,
S.
,
Bista
,
D.
, and
Bista
,
R.
,
2020
, “
Challenges, Opportunities and Future Directions of Smart Manufacturing: A State of Art Review
,”
Sustain. Futures
,
2
, p.
100023
.
6.
Gershwin
,
S. B.
,
2018
, “
The Future of Manufacturing Systems Engineering
,”
Int. J. Prod. Res.
,
56
(
1–2
), pp.
224
237
.
7.
Corvellec
,
H.
,
Stowell
,
A. F.
, and
Johansson
,
N.
,
2022
, “
Critiques of the Circular Economy
,”
J. Ind. Ecol.
,
26
(
2
), pp.
421
432
.
8.
Bortolini
,
M.
,
Galizia
,
F. G.
, and
Mora
,
C.
,
2018
, “
Reconfigurable Manufacturing Systems: Literature Review and Research Trend
,”
J. Manuf. Syst.
,
49
, pp.
93
106
.
9.
Ferasso
,
M.
,
Beliaeva
,
T.
,
Kraus
,
S.
,
Clauss
,
T.
, and
Ribeiro-Soriano
,
D.
,
2020
, “
Circular Economy Business Models: The State of Research and Avenues Ahead
,”
Bus. Strategy Environ.
,
29
(
8
), pp.
3006
3024
.
10.
Chatterjee
,
A.
, and
Layton
,
A.
,
2020
, “
Mimicking Nature for Resilient Resource and Infrastructure Network Design
,”
Reliab. Eng. Syst. Saf.
,
204
, p.
107142
.
11.
Layton
,
A.
,
Bras
,
B.
, and
Weissburg
,
M.
,
2016
, “
Ecological Principles and Metrics for Improving Material Cycling Structures in Manufacturing Networks
,”
ASME J. Manuf. Sci. Eng.
,
138
(
10
), p.
101002
.
12.
Ulanowicz
,
R. E.
,
2009
, “
The Dual Nature of Ecosystem Dynamics
,”
Ecol. Model.
,
220
(
16
), pp.
1886
1892
.
13.
Wu
,
B.
,
2012
,
Manufacturing Systems Design and Analysis
,
Springer Science & Business Media
,
London, UK
.
14.
Chryssolouris
,
G.
,
2013
,
Manufacturing Systems: Theory and Practice
,
Springer Science & Business Media
,
New York
.
15.
Gupta
,
A. K.
, and
Sivakumar
,
A. I.
,
2006
, “
Job Shop Scheduling Techniques in Semiconductor Manufacturing
,”
Int. J. Adv. Manuf. Technol.
,
27
(
11
), pp.
1163
1169
.
16.
Blackstone
,
J. H.
,
Phillips
,
D. T.
, and
Hogg
,
G. L.
,
1982
, “
A State-of-the-Art Survey of Dispatching Rules for Manufacturing Job Shop Operations
,”
Int. J. Prod. Res.
,
20
(
1
), pp.
27
45
.
17.
Wemmerlöv
,
U.
, and
Hyer
,
N. L.
,
1987
, “
Research Issues in Cellular Manufacturing
,”
Int. J. Prod. Res.
,
25
(
3
), pp.
413
431
.
18.
Culaba
,
A. B.
, and
Purvis
,
M. R. I.
,
1999
, “
A Methodology for the Life Cycle and Sustainability Analysis of Manufacturing Processes
,”
J. Cleaner Prod.
,
7
(
6
), pp.
435
445
.
19.
Curry
,
G. L.
, and
Feldman
,
R. M.
,
2010
,
Manufacturing Systems Modeling and Analysis
,
Springer Science & Business Media
,
New York
.
20.
Rosen
,
M. A.
, and
Kishawy
,
H. A.
,
2012
, “
Sustainable Manufacturing and Design: Concepts, Practices and Needs
,”
Sustainability
,
4
(
2
), pp.
154
174
.
21.
Haapala
,
K. R.
,
Zhao
,
F.
,
Camelio
,
J.
,
Sutherland
,
J. W.
,
Skerlos
,
S. J.
,
Dornfeld
,
D. A.
,
Jawahir
,
I. S.
,
Clarens
,
A. F.
, and
Rickli
,
J. L.
,
2013
, “
A Review of Engineering Research in Sustainable Manufacturing
,”
ASME J. Manuf. Sci. Eng.
,
135
(
4
), p.
041013
.
22.
Kusiak
,
A.
,
2020
, “
Resilient Manufacturing
,”
J. Intell. Manuf.
,
31
(
2
), pp.
269
269
.
23.
Paul
,
I. D.
,
Bhole
,
G. P.
, and
Chaudhari
,
J. R.
,
2014
, “
A Review on Green Manufacturing: It’s Important, Methodology and Its Application
,”
Proc. Mater. Sci.
,
6
, pp.
1644
1649
.
24.
Haldon
,
J.
,
Eisenberg
,
M.
,
Mordechai
,
L.
,
Izdebski
,
A.
, and
White
,
S.
,
2020
, “
Lessons From the Past, Policies for the Future: Resilience and Sustainability in Past Crises
,”
Environ. Syst. Decis.
,
40
(
2
), pp.
287
297
.
25.
Elmqvist
,
T.
,
Andersson
,
E.
,
Frantzeskaki
,
N.
,
McPhearson
,
T.
,
Olsson
,
P.
,
Gaffney
,
O.
,
Takeuchi
,
K.
, and
Folke
,
C.
,
2019
, “
Sustainability and Resilience for Transformation in the Urban Century
,”
Nat. Sustain.
,
2
(
4
), pp.
267
273
.
26.
Marchese
,
D.
,
Reynolds
,
E.
,
Bates
,
M. E.
,
Morgan
,
H.
,
Clark
,
S. S.
, and
Linkov
,
I.
,
2018
, “
Resilience and Sustainability: Similarities and Differences in Environmental Management Applications
,”
Sci. Total Environ.
,
613–614
, pp.
1275
1283
.
27.
Korhonen
,
J.
, and
Seager
,
T. P.
,
2008
, “
Beyond Eco-efficiency: A Resilience Perspective
,”
Bus. Strategy Environ.
,
17
(
7
), pp.
411
419
.
28.
Georgiadis
,
P.
, and
Michaloudis
,
C.
,
2012
, “
Real-Time Production Planning and Control System for Job-Shop Manufacturing: A System Dynamics Analysis
,”
Eur. J. Oper. Res.
,
216
(
1
), pp.
94
104
.
29.
Shen
,
L.
,
Dauzère-Pérès
,
S.
, and
Maecker
,
S.
,
2023
, “
Energy Cost Efficient Scheduling in Flexible Job-Shop Manufacturing Systems
,”
Eur. J. Oper. Res.
,
310
(
3
), pp.
992
1016
.
30.
Gan
,
X.
,
Zuo
,
Y.
,
Guanci
,
Y.
,
Zhang
,
A.
, and
Tao
,
F.
,
2023
, “
Dynamic Scheduling for Dual-Objective Job Shop With Machine Breakdown by Reinforcement Learning
,”
Proc. Inst. Mech. Eng. Part B
,
238
(
1–2
), p.
09544054231167086
.
31.
Dallery
,
Y.
, and
Gershwin
,
S. B.
,
1992
, “
Manufacturing Flow Line Systems: A Review of Models and Analytical Results
,”
Queueing Syst.
,
12
(
1
), pp.
3
94
.
32.
Sundar
,
R.
,
Balaji
,
A. N.
, and
Kumar
,
R. M. S.
,
2014
, “
A Review on Lean Manufacturing Implementation Techniques
,”
Proc. Eng.
,
97
, pp.
1875
1885
.
33.
Kuhn
,
H.
,
2003
, “Analysis of Automated Flow Line Systems With Repair Crew Interference,”
Analysis and Modeling of Manufacturing Systems
,
S. B.
Gershwin
, ed.,
Springer US
,
Boston, MA
, pp.
155
179
.
34.
Geršak
,
J.
,
2013
, “6—Planning Clothing Manufacturing,”
Design of Clothing Manufacturing Processes
,
J.
Geršak
, ed.,
Woodhead Publishing
,
Sawston, UK
, pp.
145
208
.
35.
Tiwari
,
M.
, and
Jana
,
P.
,
2021
, “9—Apparel Manufacturing Systems,”
Lean Tools in Apparel Manufacturing
,
P.
Jana
,
M.
Tiwari
, eds.,
Woodhead Publishing
,
Sawston, UK
, pp.
291
309
.
36.
Kiran
,
D. R.
,
2022
, “Chapter Twenty—Plant Location and Layout,”
Principles of Economics and Management for Manufacturing Engineering
,
D. R.
Kiran
, ed.,
Butterworth-Heinemann
,
Oxford, UK
, pp.
227
242
.
37.
Selim
,
H. M.
,
2000
, “Manufacturing Cell Formation Problem: A Graph Partitioning Approach,”
Current Advances in Mechanical Design and Production VII
,
M. F.
Hassan
, and
S. M.
Megahed
, eds.,
Pergamon
,
Oxford
, pp.
579
589
.
38.
Singh
,
N.
,
1993
, “
Design of Cellular Manufacturing Systems: An Invited Review
,”
Eur. J. Oper. Res.
,
69
(
3
), pp.
284
291
.
39.
Mehrabi
,
M. G.
,
Ulsoy
,
A. G.
, and
Koren
,
Y.
,
2000
, “
Reconfigurable Manufacturing Systems: Key to Future Manufacturing
,”
J. Intell. Manuf.
,
11
(
4
), pp.
403
419
.
40.
Koren
,
Y.
, and
Shpitalni
,
M.
,
2010
, “
Design of Reconfigurable Manufacturing Systems
,”
J. Manuf. Syst.
,
29
(
4
), pp.
130
141
.
41.
ElMaraghy
,
H. A.
,
2005
, “
Flexible and Reconfigurable Manufacturing Systems Paradigms
,”
Int. J. Flexible Manuf. Syst.
,
17
(
4
), pp.
261
276
.
42.
Mehrabi
,
M. G.
,
Ulsoy
,
A. G.
,
Koren
,
Y.
, and
Heytler
,
P.
,
2002
, “
Trends and Perspectives in Flexible and Reconfigurable Manufacturing Systems
,”
J. Intell. Manuf.
,
13
(
2
), pp.
135
146
.
43.
Battaïa
,
O.
,
Benyoucef
,
L.
,
Delorme
,
X.
,
Dolgui
,
A.
, and
Thevenin
,
S.
,
2020
, “Sustainable and Energy Efficient Reconfigurable Manufacturing Systems,”
Reconfigurable Manufacturing Systems: From Design to Implementation
,
L.
Benyoucef
, ed.,
Springer
,
Cham, Switzerland
, pp.
179
191
. DOI: 10.1007/978-3-030-28782-5_9
44.
Koren
,
Y.
,
Heisel
,
U.
,
Jovane
,
F.
,
Moriwaki
,
T.
,
Pritschow
,
G.
,
Ulsoy
,
G.
, and
Van Brussel
,
H.
,
1999
, “
Reconfigurable Manufacturing Systems
,”
CIRP Annals
,
48
(
2
), pp.
527
540
. DOI: 10.1016/S0007-8506(07)63232-6
45.
Morgan
,
J.
,
Halton
,
M.
,
Qiao
,
Y.
, and
Breslin
,
J. G.
,
2021
, “
Industry 4.0 Smart Reconfigurable Manufacturing Machines
,”
J. Manuf. Syst.
,
59
, pp.
481
506
.
46.
Koren
,
Y.
,
Gu
,
X.
, and
Guo
,
W.
,
2018
, “
Reconfigurable Manufacturing Systems: Principles, Design, and Future Trends
,”
Front. Mech. Eng.
,
13
(
2
), pp.
121
136
.
47.
Yadav
,
A.
, and
Jayswal
,
S. C.
,
2018
, “
Modelling of Flexible Manufacturing System: A Review
,”
Int. J. Prod. Res.
,
56
(
7
), pp.
2464
2487
.
48.
Geissdoerfer
,
M.
,
Savaget
,
P.
,
Bocken
,
N. M. P.
, and
Hultink
,
E. J.
,
2017
, “
The Circular Economy—A New Sustainability Paradigm?
J. Cleaner Prod.
,
143
, pp.
757
768
.
49.
Barreiro-Gen
,
M.
, and
Lozano
,
R.
,
2020
, “
How Circular Is the Circular Economy? Analysing the Implementation of Circular Economy in Organisations
,”
Bus. Strategy Environ.
,
29
(
8
), pp.
3484
3494
.
50.
Moraga
,
G.
,
Huysveld
,
S.
,
Mathieux
,
F.
,
Blengini
,
G. A.
,
Alaerts
,
L.
,
Van Acker
,
K.
,
de Meester
,
S.
, and
Dewulf
,
J.
,
2019
, “
Circular Economy Indicators: What Do They Measure?
Resour. Conserv. Recycl.
,
146
, pp.
452
461
.
51.
Stahel
,
W. R.
,
2016
, “
The Circular Economy
,”
Nature
,
531
(
7595
), pp.
435
438
.
52.
Morseletto
,
P.
,
2020
, “
Targets for a Circular Economy
,”
Resour. Conserv. Recycl.
,
153
, p.
104553
.
53.
Lei
,
H.
,
Li
,
L.
,
Yang
,
W.
,
Bian
,
Y.
, and
Li
,
C.-Q.
,
2021
, “
An Analytical Review on Application of Life Cycle Assessment in Circular Economy for Built Environment
,”
J. Build. Eng.
,
44
, p.
103374
.
54.
Foundation, E. M.
,
2019
,
“Circular Economy Systems Diagram,” Ellen MacArthur Foundation, Isle of Wight, UK
.
55.
Prieto-Sandoval
,
V.
,
Jaca
,
C.
, and
Ormazabal
,
M.
,
2018
, “
Towards a Consensus on the Circular Economy
,”
J. Cleaner Prod.
,
179
, pp.
605
615
.
56.
Kumar
,
V.
,
Sezersan
,
I.
,
Garza-Reyes
,
J. A.
,
Gonzalez
,
E. D. R. S.
, and
AL-Shboul
,
M. A.
,
2019
, “
Circular Economy in the Manufacturing Sector: Benefits, Opportunities and Barriers
,”
Manage. Decis.
,
57
(
4
), pp.
1067
1086
.
57.
Panyam
,
V.
,
Huang
,
H.
,
Davis
,
K.
, and
Layton
,
A.
,
2019
, “
Bio-inspired Design for Robust Power Grid Networks
,”
Appl. Energy
,
251
, p.
113349
.
58.
Dave
,
T.
, and
Layton
,
A.
,
2019
, “
Bio-inspired Design for Resilient Water Distribution Networks
,”
Proc. CIRP
,
80
, pp.
275
280
.
59.
Maler-Speredelozzi
,
V.
,
Koren
,
Y.
, and
Hu
,
S.
,
2003
, “
Convertibility Measures for Manufacturing Systems
,”
CIRP Ann.
,
52
(
1
), pp.
367
370
.
60.
Fath
,
B. D.
,
Scharler
,
U. M.
,
Ulanowicz
,
R. E.
, and
Hannon
,
B.
,
2007
, “
Ecological Network Analysis: Network Construction
,”
Ecol. Modell.
,
208
(
1
), pp.
49
55
.
61.
Wilson
,
T.
,
Chatterjee
,
A.
, and
Layton
,
A.
,
2022
, “
Exploring the Effects of Partnership and Inventory for Supply Chain Resilience using an Ecological Network Analysis
,”
ASME 2022 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
St. Louis, MO
,
Aug. 14–17
.
62.
Wilson
,
T.
,
Chatterjee
,
A.
, and
Layton
,
A.
,
2021
, “
Developing a Supply Chain Modeling Approach to Facilitate Ecology-Inspired Design for Sustainability and Resilience
,”
ASME 2021 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Virtual
,
Aug. 17–19
.
63.
Briand
,
F.
,
1983
, “
Environmental Control of Food Web Structure. Ecology
,”
Ecology
,
64
(
2
), pp.
253
263
.
64.
Panyam
,
V.
, and
Layton
,
A.
,
2019
, “
A Quantitative Engineering Study of Ecosystem Robustness Using Thermodynamic Power Cycles as Case Studies
,”
PLoS One
,
14
(
12
), p.
e0226993
.
65.
Borrett
,
S. R.
,
Fath
,
B. D.
, and
Patten
,
B. C.
,
2007
, “
Functional Integration of Ecological Networks Through Pathway Proliferation
,”
J. Theor. Biol.
,
245
(
1
), pp.
98
111
.
66.
Bushagour
,
A.
,
Hassan
,
H.
, and
Layton
,
A.
,
2024
, “
Cyclicity and Strongly Connected Actors as a Set of Early Circular Economy Design Tools for Emerging Technologies
,”
ASME 2024 19th International Manufacturing Science and Engineering Conference
,
Knoxville, TN
,
June 17–21
, pp.
1
8
.
67.
Layton
,
A.
,
Reap
,
J.
,
Bras
,
B.
, and
Weissburg
,
M.
,
2012
, “
Correlation Between Thermodynamic Efficiency and Ecological Cyclicity for Thermodynamic Power Cycles
,”
PLoS One
,
7
(
12
), p.
e51841
.
68.
Layton
,
A.
,
Bras
,
B.
, and
Weissburg
,
M.
,
2016
, “
Designing Industrial Networks Using Ecological Food Web Metrics
,”
Environ. Sci. Technol.
,
50
(
20
), pp.
11243
11252
.
69.
Info, M.
,
2024
, “
Round Head Screw Calculator
,” https://en.metcalc.info/calc-fasteners/screw/.
70.
Kazanci
,
C.
,
Matamba
,
L.
, and
Tollner
,
E. W.
,
2009
, “
Cycling in Ecosystems: An Individual Based Approach
,”
Ecol. Modell.
,
220
(
21
), pp.
2908
2914
.
71.
Parisey
,
N.
,
Bourhis
,
Y.
,
Roques
,
L.
,
Soubeyrand
,
S.
,
Ricci
,
B.
, and
Poggi
,
S.
,
2016
, “
Rearranging Agricultural Landscapes Towards Habitat Quality Optimisation: In Silico Application to Pest Regulation
,”
Ecol. Compl.
,
28
, pp.
113
122
.
You do not currently have access to this content.