Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

Chronically implanting microelectrodes for high-resolution action potential recording is critical for understanding the brain. The smallest and most flexible electrodes, most suitable for chronic recordings, are also the most difficult to insert due to buckling against the thin but hard-to-penetrate brain meninges. To address such implantation challenges without introducing further damage to the brain, this paper presents our design and prototype of an inchworm-type insertion device that conducts a grip-feed-release incremental motion for planar microelectrode insertion. To optimize the operating parameters of the developed inchworm insertion device, experimental studies were conducted on the polyvinyl chloride-based brain-mimicking phantom to investigate the effects of (1) incremental insertion depth, (2) inserter drive shaft rotary speed, and (3) the resulting inchworm insertion speed, on the phantom (1) penetration rupture force and (2) dimpling depth at rupture. Analysis showed that all three factors had a statistically significant impact on the rupture force and dimpling depth. A moderate level of the resulting insertion speed yielded the lowest rupture force and dimpling depth at rupture. Low insertion speed levels were associated with higher rupture force while high insertion speeds led to a large variance in dimpling depth and potential insertion failure. To achieve such a moderate insertion speed, it would be preferred for both the incremental insertion depth and the drive shaft rotary speed to be at a moderate level. Such findings lay the foundation for enabling previously impossible buckling-free insertion of miniaturized flexible planar microelectrodes deep into the brain.

References

1.
Im
,
C.
, and
Seo
,
J.-M.
,
2016
, “
A Review of Electrodes for the Electrical Brain Signal Recording
,”
Biomed. Eng. Lett.
,
6
(
3
), pp.
104
112
.
2.
Ferguson
,
M.
,
Sharma
,
D.
,
Ross
,
D.
, and
Zhao
,
F.
,
2019
, “
A Critical Review of Microelectrode Arrays and Strategies for Improving Neural Interfaces
,”
Adv. Healthcare Mater.
,
8
(
19
), p.
1900558
.
3.
Yi
,
D.
,
Yao
,
Y.
,
Wang
,
Y.
, and
Chen
,
L.
,
2022
, “
Manufacturing Processes of Implantable Microelectrode Array for In Vivo Neural Electrophysiological Recordings and Stimulation: A State-of-the-Art Review
,”
ASME J. Micro Nano-Manuf.
,
10
(
4
), p.
041001
.
4.
Berdondini
,
L.
,
Imfeld
,
K.
,
Maccione
,
A.
,
Tedesco
,
M.
,
Neukom
,
S.
,
Koudelka-Hep
,
M.
, and
Martinoia
,
S.
,
2009
, “
Active Pixel Sensor Array for High Spatio-Temporal Resolution Electrophysiological Recordings From Single Cell to Large Scale Neuronal Networks
,”
Lab Chip
,
9
(
18
), pp.
2644
2651
.
5.
Strumwasser
,
F.
,
1958
, “
Long-Term Recording From Single Neurons in Brain of Unrestrained Mammals
,”
Science
,
127
(
3296
), pp.
469
470
.
6.
Nordhausen
,
C. T.
,
Maynard
,
E. M.
, and
Normann
,
R. A.
,
1996
, “
Single Unit Recording Capabilities of a 100 Microelectrode Array
,”
Brain Res.
,
726
(
1
), pp.
129
140
.
7.
Hubel
,
D. H.
, and
Wiesel
,
T. N.
,
1959
, “
Receptive Fields of Single Neurones in the Cat’s Striate Cortex
,”
J. Physiol.
,
148
(
3
), pp.
574
591
.
8.
Baker
,
S. N.
,
Philbin
,
N.
,
Spinks
,
R.
,
Pinches
,
E. M.
,
Wolpert
,
D. M.
,
MacManus
,
D. G.
,
Pauluis
,
Q.
, and
Lemon
,
R. N.
,
1999
, “
Multiple Single Unit Recording in the Cortex of Monkeys Using Independently Moveable Microelectrodes
,”
J. Neurosci. Methods
,
94
(
1
), pp.
5
17
.
9.
Pettigrew
,
R. I.
,
2014
, “
BRAIN Initiative to Transform Human Imaging
,”
Am. Assoc. Adv. Sci.
,
6
(
244
), p.
244ed216
.
12.
Jun
,
J. J.
,
Steinmetz
,
N. A.
,
Siegle
,
J. H.
,
Denman
,
D. J.
,
Bauza
,
M.
,
Barbarits
,
B.
,
Lee
,
A. K.
, et al
,
2017
, “
Fully Integrated Silicon Probes for High-Density Recording of Neural Activity
,”
Nature
,
551
(
7679
), pp.
232
236
.
13.
Steinmetz
,
N. A.
,
Aydin
,
C.
,
Lebedeva
,
A.
,
Okun
,
M.
,
Pachitariu
,
M.
,
Bauza
,
M.
,
Beau
,
M.
, et al
,
2021
, “
Neuropixels 2.0: A Miniaturized High-Density Probe for Stable, Long-Term Brain Recordings
,”
Science
,
372
(
6539
), p.
eabf4588
.
14.
Durand
,
S.
,
Heller
,
G. R.
,
Ramirez
,
T. K.
,
Luviano
,
J. A.
,
Williford
,
A.
,
Sullivan
,
D. T.
,
Cahoon
,
A. J.
, et al
,
2023
, “
Acute Head-Fixed Recordings in Awake Mice With Multiple Neuropixels Probes
,”
Nat. Protoc.
,
18
(
2
), pp.
424
457
.
15.
Musk
,
E.
, and
Neuralink
,
2019
, “
An Integrated Brain-Machine Interface Platform With Thousands of Channels
,”
J. Med. Internet Res.
,
21
(
10
), p.
e16194
.
16.
Patel
,
P. R.
,
Na
,
K.
,
Zhang
,
H.
,
Kozai
,
T. D.
,
Kotov
,
N. A.
,
Yoon
,
E.
, and
Chestek
,
C. A.
,
2015
, “
Insertion of Linear 8.4 µm Diameter 16 Channel Carbon Fiber Electrode Arrays for Single Unit Recordings
,”
J. Neural. Eng.
,
12
(
4
), p.
046009
.
17.
Patel
,
P. R.
,
Popov
,
P.
,
Caldwell
,
C. M.
,
Welle
,
E. J.
,
Egert
,
D.
,
Pettibone
,
J. R.
,
Roossien
,
D. H.
, et al
,
2020
, “
High Density Carbon Fiber Arrays for Chronic Electrophysiology, Fast Scan Cyclic Voltammetry, and Correlative Anatomy
,”
J. Neural. Eng.
,
17
(
5
), p.
056029
.
18.
Thielen
,
B.
, and
Meng
,
E.
,
2021
, “
A Comparison of Insertion Methods for Surgical Placement of Penetrating Neural Interfaces
,”
J. Neural. Eng.
,
18
(
4
), p.
041003
.
19.
Chen
,
L.
,
Hartner
,
J. P.
,
Dong
,
T. K.
,
Li
,
A. D. R.
,
Watson
,
B. O.
, and
Shih
,
A. J.
,
2021
, “
Flexible High-Resolution Force and Dimpling Measurement System for Pia and Dura Penetration During In Vivo Microelectrode Insertion Into Rat Brain
,”
IEEE Trans. Biomed. Eng.
,
68
(
8
), pp.
2602
2612
.
20.
Chen
,
S.
, and
Kucernak
,
A.
,
2002
, “
Fabrication of Carbon Microelectrodes With an Effective Radius of 1 nm
,”
Electrochem. Commun.
,
4
(
1
), pp.
80
85
.
21.
Millar
,
J.
, and
Pelling
,
C. W.
,
2001
, “
Improved Methods for Construction of Carbon Fibre Electrodes for Extracellular Spike Recording
,”
J. Neurosci. Methods
,
110
(
1–2
), pp.
1
8
.
22.
Salcman
,
M.
, and
Bak
,
M. J.
,
1973
, “
Design, Fabrication, and In Vivo Behavior of Chronic Recording Intracortical Microelectrodes
,”
IEEE Trans. Biomed. Eng.
,
20
(
4
), pp.
253
260
.
23.
Guitchounts
,
G.
,
Markowitz
,
J. E.
,
Liberti
,
W. A.
, and
Gardner
,
T. J.
,
2013
, “
A Carbon-Fiber Electrode Array for Long-Term Neural Recording
,”
J. Neural. Eng.
,
10
(
4
), p.
046016
.
24.
Dong
,
T.
,
Chen
,
L.
, and
Shih
,
A.
,
2020
, “
Laser Sharpening of Carbon Fiber Microelectrode Arrays for Brain Recording
,”
ASME J. Micro. Nano Manuf.
,
8
(
4
), p.
041013
.
25.
Wang
,
Y.
,
Cai
,
Y.
,
Gong
,
H.
, and
Lee
,
Y.-S.
,
2022
, “
Design and 3D Printing of Waveguide-Based Ultrasonic Longitudinal-Torsional Transducers for Medical Needle Insertion
,”
Sens. Actuat., A
,
344
, p.
113706
.
26.
Wang
,
Y.
,
Shih
,
Y. Y. I.
, and
Lee
,
Y.-S.
,
2021
, “
Vibration-Assisted Insertion of Flexible Neural Microelectrodes With Bio-Dissolvable Guides for Medical Implantation
,”
Proceedings of ASME 2021 16th International Manufacturing Science and Engineering Conference
, p.
V001T03A009
.
27.
Tseng
,
W.-T.
,
Yen
,
C.-T.
, and
Tsai
,
M.-L.
,
2011
, “
A Bundled Microwire Array for Long-Term Chronic Single-Unit Recording in Deep Brain Regions of Behaving Rats
,”
J. Neurosci. Methods
,
201
(
2
), pp.
368
376
.
28.
Obaid
,
A.
,
Hanna
,
M. E.
,
Wu
,
Y. W.
,
Kollo
,
M.
,
Racz
,
R.
,
Angle
,
M. R.
,
Muller
,
J.
, et al
,
2020
, “
Massively Parallel Microwire Arrays Integrated With CMOS Chips for Neural Recording
,”
Sci. Adv.
,
6
(
12
), p.
eaay2789
.
29.
Ware
,
T.
,
Simon
,
D.
,
Rennaker
,
R. L.
, and
Voit
,
W.
,
2013
, “
Smart Polymers for Neural Interfaces
,”
Polym. Rev.
,
53
(
1
), pp.
108
129
.
30.
Na
,
K.
,
Sperry
,
Z. J.
,
Lu
,
J.
,
Voroslakos
,
M.
,
Parizi
,
S. S.
,
Bruns
,
T. M.
,
Yoon
,
E.
, and
Seymour
,
J. P.
,
2020
, “
Novel Diamond Shuttle to Deliver Flexible Neural Probe With Reduced Tissue Compression
,”
Microsyst. Nanoeng.
,
6
(
1
), p.
37
.
31.
Timothy
,
L. H.
,
Camilo
,
A. D.-B.
,
Viktor
,
K.
,
Michel
,
M. M.
, and
Philip
,
N. S.
,
2019
, “
The “Sewing Machine” for Minimally Invasive Neural Recording
,”
bioRxiv
, p.
578542
.
32.
Felix
,
S. H.
,
Shah
,
K. G.
,
Tolosa
,
V. M.
,
Sheth
,
H. J.
,
Tooker
,
A. C.
,
Delima
,
T. L.
,
Jadhav
,
S. P.
,
Frank
,
L. M.
, and
Pannu
,
S. S.
,
2013
, “
Insertion of Flexible Neural Probes Using Rigid Stiffeners Attached With Biodissolvable Adhesive
,”
J. Visual. Exp.
,
79
, p.
e50609
.
33.
Khilwani
,
R.
,
Gilgunn
,
P. J.
,
Kozai
,
T. D. Y.
,
Ong
,
X. C.
,
Korkmaz
,
E.
,
Gunalan
,
P. K.
,
Cui
,
X. T.
,
Fedder
,
G. K.
, and
Ozdoganlar
,
O. B.
,
2016
, “
Ultra-Miniature Ultra-Compliant Neural Probes With Dissolvable Delivery Needles: Design, Fabrication and Characterization
,”
Biomed. Microdev.
,
18
(
6
), p.
97
.
34.
Arafat
,
M. A.
,
Rubin
,
L. N.
,
Jefferys
,
J. G. R.
, and
Irazoqui
,
P. P.
,
2019
, “
A Method of Flexible Micro-Wire Electrode Insertion in Rodent for Chronic Neural Recording and a Device for Electrode Insertion
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
27
(
9
), pp.
1724
1731
.
35.
Yi
,
D.
,
Hartner
,
J. P.
,
Ung
,
B. S.
,
Zhu
,
H. L.
,
Watson
,
B. O.
, and
Chen
,
L.
,
2022
, “
3D Printed Skull Cap and Benchtop Fabricated Microwire-Based Microelectrode Array for Custom Rat Brain Recordings
,”
Bioengineering
,
9
(
10
), p.
550
.
36.
Sharp
,
A. A.
,
Ortega
,
A. M.
,
Restrepo
,
D.
,
Curran-Everett
,
D.
, and
Gall
,
K.
,
2009
, “
In Vivo Penetration Mechanics and Mechanical Properties of Mouse Brain Tissue at Micrometer Scales
,”
IEEE Trans. Biomed. Eng.
,
56
(
1
), pp.
45
53
.
37.
Chen
,
L.
,
Hartner
,
J.
,
Van Dyke
,
D.
,
Dong
,
T.
,
Watson
,
B.
, and
Shih
,
A.
,
2019
, “
Custom Skull Cap With Precision Guides for Deep Insertion of Cellular-Scale Microwire Into Rat Brain
,”
Proceedings of International Manufacturing Science and Engineering Conference
,
Erie, PA
,
June 10–14
,
American Society of Mechanical Engineers
, p.
V001T005A009
.
38.
Li
,
W.
,
Belmont
,
B.
,
Greve
,
J. M.
,
Manders
,
A. B.
,
Downey
,
B. C.
,
Zhang
,
X.
,
Xu
,
Z.
,
Guo
,
D.
, and
Shih
,
A.
,
2016
, “
Polyvinyl Chloride as a Multimodal Tissue-Mimicking Material With Tuned Mechanical and Medical Imaging Properties
,”
Med. Phys.
,
43
(
10
), pp.
5577
5592
.
39.
Karimi
,
A.
, and
Navidbakhsh
,
M.
,
2014
, “
An Experimental Study on the Mechanical Properties of Rat Brain Tissue Using Different Stress-Strain Definitions
,”
J. Mater. Sci. Mater. Med.
,
25
(
7
), pp.
1623
1630
.
40.
Barrese
,
J. C.
,
Rao
,
N.
,
Paroo
,
K.
,
Triebwasser
,
C.
,
Vargas-Irwin
,
C.
,
Franquemont
,
L.
, and
Donoghue
,
J. P.
,
2013
, “
Failure Mode Analysis of Silicon-Based Intracortical Microelectrode Arrays in Non-Human Primates
,”
J. Neural. Eng.
,
10
(
6
), p.
066014
.
41.
Scott
,
K. M.
,
Du
,
J.
,
Lester
,
H. A.
, and
Masmanidis
,
S. C.
,
2012
, “
Variability of Acute Extracellular Action Potential Measurements With Multisite Silicon Probes
,”
J. Neurosci. Methods
,
211
(
1
), pp.
22
30
.
42.
Tian
,
C.
, and
He
,
J.
,
2006
, “
Monitoring Insertion Force and Electrode Impedance During Implantation of Microwire Electrodes
,”
Proceedings of 2006 IEEE Engineering in Medicine and Biology 27th Annual Conference
,
Shanghai, China
,
Jan. 17–18
,
IEEE
, pp.
7333
7336
.
43.
Ward
,
M. P.
,
Rajdev
,
P.
,
Ellison
,
C.
, and
Irazoqui
,
P. P.
,
2009
, “
Toward a Comparison of Microelectrodes for Acute and Chronic Recordings
,”
Brain Res.
,
1282
, pp.
183
200
.
You do not currently have access to this content.