Abstract

This paper reviews the dynamics of machining and chatter stability research since the first stability laws were introduced by Tlusty and Tobias in the 1950s. The paper aims to introduce the fundamentals of dynamic machining and chatter stability, as well as the state of the art and research challenges, to readers who are new to the area. First, the unified dynamic models of mode coupling and regenerative chatter are introduced. The chatter stability laws in both the frequency and time domains are presented. The dynamic models of intermittent cutting, such as milling, are presented and their stability solutions are derived by considering the time-periodic behavior. The complexities contributed by highly intermittent cutting, which leads to additional stability pockets, and the contribution of the tool's flank face to process damping are explained. The stability of parallel machining operations is explained. The design of variable pitch and serrated cutting tools to suppress chatter is presented. The paper concludes with current challenges in chatter stability of machining which remains to be the main obstacle in increasing the productivity and quality of manufactured parts.

References

1.
Taylor
,
F. W.
,
1906
, “
On the Art of Cutting Metals
,”
Trans. ASME
,
23
, pp.
70
350
.
2.
Arnold
,
R. N.
,
1946
, “
Cutting Tools Research: Report of Subcommittee on Carbide Tools: The Mechanism of Tool Vibration in the Cutting of Steel
,”
Proc. Inst. Mech. Eng. Part B
,
154
(
1
), pp.
261
284
.
3.
Doi
,
S.
, and
Kato
,
S.
,
1956
, “
Chatter Vibration of Lathe Tools
,”
Trans. ASME
,
78
, p.
1127
.
4.
Tobias
,
S.
, and
Fishwick
,
W.
,
1958
, “
Theory of Regenerative Machine Tool Chatter
,”
Engineer
,
205
(
7
), pp.
199
203
.
5.
Tlusty
,
J.
, and
Polacek
,
M.
,
1963
, “
The Stability of the Machine Tool Against Self Excited Vibration in Machining
,”
Proceedings of the ASME International Research in Production Engineering
,
Pittsburgh, PA
, pp.
465
474
.
6.
Tlusty
,
J.
,
1978
, “
Analysis of the State of Research in Cutting Dynamics
,”
CIRP Ann.
,
27
(
2
), pp.
583
589
.
7.
Tlusty
,
J.
,
1986
, “
Dynamics of High-Speed Milling
,”
ASME J. Eng. Ind.
,
108
(
2
), pp.
59
67
. 10.1115/1.3187052
8.
Altintas
,
Y.
, and
Weck
,
M.
,
2004
, “
Chatter Stability of Metal Cutting and Grinding
,”
CIRP Ann. Manuf. Technol.
,
53
(
2
), pp.
619
642
. 10.1016/S0007-8506(07)60032-8
9.
Wiercigroch
,
M.
, and
Budak
,
E.
,
2001
, “
Sources of Nonlinearities, Chatter Generation and Suppression in Metal Cutting
,”
Philos. Trans. R. Soc., A
,
359
(
1781
), pp.
663
693
. 10.1098/rsta.2000.0750
10.
Quintana
,
G.
, and
Ciurana
,
J.
,
2011
, “
Chatter in Machining Processes: A Review
,”
Int. J. Mach. Tools Manuf.
,
51
(
5
), pp.
363
376
. 10.1016/j.ijmachtools.2011.01.001
11.
Altintas
,
Y.
,
Stepan
,
G.
,
Merdol
,
D.
, and
Dombovari
,
Z.
,
2008
, “
Chatter Stability of Milling in Frequency and Discrete Time Domain
,”
CIRP J. Manuf. Sci. Technol.
,
1
(
1
), pp.
35
44
. 10.1016/j.cirpj.2008.06.003
12.
Merritt
,
H. E.
,
1965
, “
Theory of Self-Excited Machine-Tool Chatter: Contribution to Machine-Tool Chatter Research
,”
ASME J. Eng. Ind.
,
87
(
4
), pp.
447
454
. 10.1115/1.3670861
13.
Koenigsberger
,
F.
, and
Tlusty
,
J.
,
1970
,
Structures of Machine Tools
,
Pergamon Press
,
Oxford
.
14.
Smith
,
S.
, and
Tlusty
,
J.
,
1997
, “
Current Trends in High-Speed Machining
,”
ASME J. Manuf. Sci. Eng.
,
119
(
4B
), pp.
664
666
. 10.1115/1.2836806
15.
Abele
,
E.
,
Altintas
,
Y.
, and
Brecher
,
C.
,
2010
, “
Machine Tool Spindle Units
,”
CIRP J. Manuf. Sci. Technol.
,
59
(
2
), pp.
781
802
. 10.1016/j.cirp.2010.05.002
16.
Sweeney
,
G.
, and
Tobias
,
S.
,
1969
, “
Survey of Basic Machine Tool Chatter Research
,”
Int. J. Mach. Tool Des.
,
9
(
3
), pp.
217
238
. 10.1016/0020-7357(69)90001-8
17.
Munoa
,
J.
,
Beudaert
,
X.
,
Dombovari
,
Z.
,
Altintas
,
Y.
,
Budak
,
E.
,
Brecher
,
C.
, and
Stepan
,
G.
,
2016
, “
Chatter Suppression Techniques in Metal Cutting
,”
CIRP J. Manuf. Sci. Technol.
,
65
(
2
), pp.
785
808
. 10.1016/j.cirp.2016.06.004
18.
Tunc
,
L. T.
,
Mohammadi
,
Y.
, and
Budak
,
E.
,
2018
, “
Destabilizing Effect of Low Frequency Modes on Process Damped Stability of Multi-Mode Milling Systems
,”
Mech. Syst. Signal Process.
,
111
, pp.
423
441
. 10.1016/j.ymssp.2018.03.051
19.
Sridhar
,
R.
,
Hohn
,
R. E.
, and
Long
,
G. W.
,
1968
, “
A Stability Algorithm for the General Milling Process: Contribution to Machine Tool Chatter Research
,”
ASME J. Eng. Ind.
,
90
(
2
), pp.
330
334
. 10.1115/1.3604637
20.
Minis
,
I.
,
Yanushevsky
,
R.
,
Tembo
,
A.
, and
Hocken
,
R.
,
1990
, “
Analysis of Linear and Nonlinear Chatter in Milling
,”
CIRP Ann.
,
39
(
1
), pp.
459
462
. 10.1016/S0007-8506(07)61096-8
21.
Minis
,
I.
, and
Yanushevsky
,
R.
,
1993
, “
A New Theoretical Approach for the Prediction of Machine Tool Chatter in Milling
,”
ASME J. Eng. Ind.
,
115
(
1
), pp.
1
8
. 10.1115/1.2901633
22.
Budak
,
E.
, and
Altintas
,
Y.
,
1998
, “
Analytical Prediction of Chatter Stability in Milling—Part 1: General Formulation
,”
ASME J. Dyn. Syst. Meas. Control
,
120
(
1
), pp.
22
30
. 10.1115/1.2801317
23.
Budak
,
E.
, and
Altintas
,
Y.
,
1998
, “
Analytical Prediction of Chatter Stability in Milling—Part II: Application of the General Formulation to Common Milling Systems
,”
ASME J. Dyn. Syst. Meas. Control
,
120
(
1
), pp.
31
36
. 10.1115/1.2801318
24.
Altintas
,
Y.
, and
Budak
,
E.
,
1995
, “
Analytical Prediction of Stability Lobes in Milling
,”
CIRP Ann.
,
44
(
1
), pp.
357
362
. 10.1016/S0007-8506(07)62342-7
25.
Stépán
,
G.
,
1998
, “Delay-Differential Equation Models for Machine Tool Chatter,”,
Dynamics and Chaos in Manufacturing Processes
,
F.
Moon
, ed.,
Wiley
,
New York
, pp.
165
192
.
26.
Insperger
,
T.
, and
Stépán
,
G.
,
2000
, “
Stability of the Milling Process
,”
Period. Polytech. Mech. Eng.
,
44
(
1
), pp.
47
57
.
27.
Merchant
,
M. E.
,
1945
, “
Mechanics of the Metal Cutting Process. I. Orthogonal Cutting and a Type 2 Chip
,”
J. Appl. Phys.
,
16
(
5
), pp.
267
275
. 10.1063/1.1707586
28.
Budak
,
E.
,
Altintas
,
Y.
, and
Armarego
,
E. J. A.
,
1996
, “
Prediction of Milling Force Coefficients From Orthogonal Cutting Data
,”
ASME J. Manuf. Sci. Eng.
,
118
(
2
), pp.
216
224
. 10.1115/1.2831014
29.
Ehmann
,
K.
,
Kapoor
,
S.
,
DeVor
,
R.
, and
Lazoglu
,
I.
,
1997
, “
Machining Process Modeling: A Review
,”
ASME J. Manuf. Sci.
,
119
(
4B
), pp.
655
663
. 10.1115/1.2836805
30.
Ismail
,
F.
, and
Vadari
,
V.
,
1990
, “
Machining Chatter of End Mills With Unequal Modes
,”
ASME J. Eng. Ind.
,
112
(
3
), pp.
229
235
. 10.1115/1.2899579
31.
Das
,
M. K.
, and
Tobias
,
S. A.
,
1967
, “
The Relation Between the Static and the Dynamic Cutting of Metals
,”
Int. J. Mach. Tool Desi. Res.
,
7
(
2
), pp.
63
68
. 10.1016/0020-7357(67)90026-1
32.
Eynian
,
M.
, and
Altintas
,
Y.
,
2009
, “
Chatter Stability of General Turning Operations With Process Damping
,”
ASME J. Manuf. Sci. Eng.
,
131
(
4
), p.
041005
. 10.1115/1.3159047
33.
Altintas
,
Y.
,
2012
,
Manufacturing Automation: Metal Cutting Mechanics, Machine Tool Vibrations, and CNC Design
,
Cambridge University Press
,
Cambridge
.
34.
Tyler
,
C. T.
, and
Schmitz
,
T. L.
,
2013
, “
Analytical Process Damping Stability Prediction
,”
J. Manuf. Process.
,
15
(
1
), pp.
69
76
. 10.1016/j.jmapro.2012.11.006
35.
Budak
,
E.
, and
Tunc
,
L. T.
,
2010
, “
Identification and Modeling of Process Damping in Turning and Milling Using a New Approach
,”
CIRP Ann.
,
59
(
1
), pp.
403
408
. 10.1016/j.cirp.2010.03.078
36.
Altintas
,
Y.
,
Eynian
,
M.
, and
Onozuka
,
H.
,
2008
, “
Identification of Dynamic Cutting Force Coefficients and Chatter Stability With Process Damping
,”
CIRP Ann. Manuf. Technol.
,
57
(
1
), pp.
371
374
. 10.1016/j.cirp.2008.03.048
37.
Ahmadi
,
K.
, and
Altintas
,
Y.
,
2014
, “
Identification of Machining Process Damping Using Output-Only Modal Analysis
,”
ASME J. Manuf. Sci. Eng.
,
136
(
5
). 10.1115/1.4027676
38.
Tuysuz
,
O.
, and
Altintas
,
Y.
,
2019
, “
Analytical Modeling of Process Damping in Machining
,”
ASME J. Manuf. Sci. Eng.
,
141
(
6
), p.
061006
. 10.1115/1.4043310
39.
Dombovari
,
Z.
,
Iglesias
,
A.
,
Zatarain
,
M.
, and
Insperger
,
T.
,
2011
, “
Prediction of Multiple Dominant Chatter Frequencies in Milling Processes
,”
Int. J. Mach. Tools Manuf.
,
51
(
6
), pp.
457
464
. 10.1016/j.ijmachtools.2011.02.002
40.
Davies
,
M. A.
, and
Balachandran
,
B.
,
2000
, “
Impact Dynamics in the Milling of Thin-Walled Structures
,”
Nonlin. Dyn.
,
22
(
4
), pp.
375
392
. 10.1023/A:1008364405411
41.
Davies
,
M. A.
,
Pratt
,
J. R.
,
Dutterer
,
B.
, and
Burns
,
T. J.
,
2002
, “
Stability Prediction for Low Radial Immersion Milling
,”
ASME J. Manuf. Sci. Eng.
,
124
(
2
), pp.
217
225
. 10.1115/1.1455030
42.
Merdol
,
S. D.
, and
Altintas
,
Y.
,
2004
, “
Multi Frequency Solution of Chatter Stability for Low Immersion Milling
,”
ASME J. Manuf. Sci. Eng.
,
126
(
3
), pp.
459
466
. 10.1115/1.1765139
43.
Bayly
,
P. V.
,
Halley
,
J. E.
,
Mann
,
B. P.
, and
Davies
,
M. A.
,
2003
, “
Stability of Interrupted Cutting by Temporal Finite Element Analysis
,”
ASME J. Manuf. Sci. Eng.
,
125
(
2
), pp.
220
225
. 10.1115/1.1556860
44.
Insperger
,
T.
,
Mann
,
B. P.
,
Stépán
,
G.
, and
Bayly
,
P. V.
,
2003
, “
Stability of Up-Milling and Down-Milling, Part 1: Alternative Analytical Methods
,”
Int. J. Mach. Tools Manuf.
,
43
(
1
), pp.
25
34
. 10.1016/S0890-6955(02)00159-1
45.
Mann
,
B. P.
,
Insperger
,
T.
,
Bayly
,
P. V.
, and
Stépán
,
G.
,
2003
, “
Stability of Up-Milling and Down-Milling, Part 2: Experimental Verification
,”
Int. J. Mach. Tools Manuf.
,
43
(
1
), pp.
35
40
. 10.1016/S0890-6955(02)00160-8
46.
Gradišek
,
J.
,
Kalveram
,
M.
,
Insperger
,
T.
,
Weinert
,
K.
,
Stépán
,
G.
,
Govekar
,
E.
, and
Grabec
,
I.
,
2005
, “
On Stability Prediction for Milling
,”
Int. J. Mach. Tools Manuf.
,
45
(
7
), pp.
769
781
. 10.1016/j.ijmachtools.2004.11.015
47.
Merdol
,
D.
,
2008
, “
Virtual Three-Axis Milling Process Simulation and Optimization
,” Ph.D.,
University of British Columbia
.
48.
Insperger
,
T.
, and
Stepan
,
G.
,
2011
,
Semi-Discretization for Time-Delay Systems
,
Springer
,
New York
.
49.
Szalai
,
R.
, and
Stepan
,
G.
,
2006
, “
Lobes and Lenses in the Stability Chart of Interrupted Turning
,”
ASME J. Comput. Nonlinear Dyn.
,
1
(
3
), pp.
205
211
. doi.org/10.1115/1.2198216
50.
Zatarain
,
M.
,
Muñoa
,
J.
,
Peigné
,
G.
, and
Insperger
,
T.
,
2006
, “
Analysis of the Influence of Mill Helix Angle on Chatter Stability
,”
CIRP Ann.
,
55
(
1
), pp.
365
368
. 10.1016/S0007-8506(07)60436-3
51.
Moon
,
F. C.
, and
Kalmár-Nagy
,
T.
,
2001
, “
Nonlinear Models for Complex Dynamics in Cutting Materials
,”
Philos. Trans. R. Soc., A
,
359
(
1781
), pp.
695
711
. 10.1098/rsta.2000.0751
52.
Honeycutt
,
A.
, and
Schmitz
,
T. L.
,
2018
, “
Milling Bifurcations: A Review of Literature and Experiment
,”
ASME J. Manuf. Sci. Eng.
,
140
(
12
), p.
120801
. 10.1115/1.4041325
53.
Davies
,
M. A.
,
Dutterer
,
B.
,
Pratt
,
J. R.
,
Schaut
,
A. J.
, and
Bryan
,
J. B.
,
1998
, “
On the Dynamics of High-Speed Milling With Long, Slender Endmills
,”
CIRP Ann.
,
47
(
1
), pp.
55
60
. 10.1016/S0007-8506(07)62784-X
54.
Insperger
,
T.
, and
Stépán
,
G.
,
2004
, “
Vibration Frequencies in High-Speed Milling Processes or a Positive Answer to Davies, Pratt, Dutterer and Burns
,”
ASME J. Manuf. Sci. Eng.
,
126
(
3
), pp.
481
487
. 10.1115/1.1763184
55.
Insperger
,
T.
, and
Stépán
,
G.
,
2004
, “
Updated Semi-Discretization Method for Periodic Delay-Differential Equations With Discrete Delay
,”
Int. J. Numer. Meth. Eng.
,
61
(
1
), pp.
117
141
. 10.1002/nme.1061
56.
Zhao
,
M. X.
, and
Balachandran
,
B.
,
2001
, “
Dynamics and Stability of Milling Process
,”
Int. J. Solids Struct.
,
38
(
10
), pp.
2233
2248
. 10.1016/S0020-7683(00)00164-5
57.
Honeycutt
,
A.
, and
Schmitz
,
T.
,
2016
, “
A Numerical and Experimental Investigation of Period-n Bifurcations in Milling
,”
ASME J. Manuf. Sci. Eng.
,
139
(
1
), p.
011003
.
58.
Honeycutt
,
A.
, and
Schmitz
,
T. L.
,
2016
, “
Experimental Validation of Period-n Bifurcations in Milling
,”
Procedia Manufacturing
,
5
, pp.
362
374
. doi.org/10.1016/j.promfg.2016.08.031
59.
Honeycutt
,
A.
, and
Schmitz
,
T.
,
2016
, “
A New Metric for Automated Stability Identification in Time Domain Milling Simulation
,”
ASME J. Manuf. Sci. Eng.
,
138
(
7
), p.
074501
. 10.1115/1.4032586
60.
Honeycutt
,
A.
, and
Schmitz
,
T. L.
,
2016
, “
Milling Stability Interrogation by Subharmonic Sampling
,”
ASME J. Manuf. Sci. Eng.
,
139
(
4
), p.
041009
.
61.
Honeycutt
,
A.
, and
Schmitz
,
T. L.
,
2017
, “
A Study of Milling Surface Quality During Period-2 Bifurcations
,”
Procedia Manuf.
,
10
, pp.
183
193
. 10.1016/j.promfg.2017.07.046
62.
Roukema
,
J. C.
, and
Altintas
,
Y.
,
2007
, “
Generalized Modeling of Drilling Vibrations. Part I: Time Domain Model of Drilling Kinematics, Dynamics and Hole Formation
,”
Int. J. Mach. Tools Manuf.
,
47
(
9
), pp.
1455
1473
. 10.1016/j.ijmachtools.2006.10.005
63.
Altintas
,
Y.
, and
Ko
,
J. H.
,
2006
, “
Chatter Stability of Plunge Milling
,”
CIRP Ann.
,
55
(
1
), pp.
361
364
. 10.1016/S0007-8506(07)60435-1
64.
Altintas
,
Y.
,
2001
, “
Analytical Prediction of Three Dimensional Chatter Stability in Milling
,”
JSME Int. J. C-Mech. Syst. Mach. Elem. Manuf.
,
44
(
3
), pp.
717
723
. 10.1299/jsmec.44.717
65.
Altintas
,
Y.
,
Shamoto
,
E.
,
Lee
,
P.
, and
Budak
,
E.
,
1999
, “
Analytical Prediction of Stability Lobes in Ball End Milling
,”
ASME J. Manuf. Sci. Eng.
,
121
(
4
), pp.
586
592
. 10.1115/1.2833064
66.
Jensen
,
S. A.
, and
Shin
,
Y. C.
,
1999
, “
Stability Analysis in Face Milling Operations, Part 1: Theory of Stability Lobe Prediction
,”
ASME J. Manuf. Sci. Eng.
,
121
(
4
), pp.
600
605
. 10.1115/1.2833075
67.
Ozturk
,
E.
, and
Budak
,
E.
,
2010
, “
Dynamics and Stability of Five-Axis Ball-End Milling
,”
ASME J. Manuf. Sci. Eng.
,
132
(
2
), p.
021003
. 10.1115/1.4001038
68.
Chao
,
S.
, and
Altintas
,
Y.
,
2016
, “
Chatter Free Tool Orientations in 5-Axis Ball-End Milling
,”
Int. J. Mach. Tools Manuf.
,
106
, pp.
89
97
. 10.1016/j.ijmachtools.2016.04.007
69.
Sims
,
N. D.
,
2007
, “
Vibration Absorbers for Chatter Suppression: A New Analytical Tuning Methodology
,”
ASME J. Sound Vib.
,
301
(
3–5
), pp.
592
607
. 10.1016/j.jsv.2006.10.020
70.
Yang
,
Y.
,
Munoa
,
J.
, and
Altintas
,
Y.
,
2010
, “
Optimization of Multiple Tuned Mass Dampers to Suppress Machine Tool Chatter
,”
Int. J. Mach. Tools Manuf.
,
50
(
9
), pp.
834
842
. 10.1016/j.ijmachtools.2010.04.011
71.
Slavicek
,
J.
,
1965
, “
The Effect of Irregular Tooth Pitch on Stability in Milling
,”
6th Machine Tool Design and Research Conference
,
The Manchester College of Science & Technology
,
September
, Vol.
1
, pp.
15
22
.
72.
Opitz
,
H.
, “
Improvement of the Dynamic Stability of the Milling Process by Irregular Tooth Pitch
,”
Proceedings of the 7th International MTDR Conference
, Vol.
1
, pp.
213
227
.
73.
Vanherck
,
P.
,
1967
, “
Increasing Milling Machine Productivity by Use of Cutters With Non Constant Cutting Edge Pitch
,”
Proceedings of the 8th MTDR Conference
,
Manchester
,
September
, Vol.
2
, pp.
947
960
.
74.
Tlusty
,
J.
,
Ismail
,
F.
, and
Zaton
,
W.
,
1983
, “
Use of Special Milling Cutters Against Chatter
,”
Proceedings of NAMRC
,
University of Wisconsin-Madison
,
May 24–26
, vol.
11
, pp.
408
415
.
75.
Altintas
,
Y.
,
Engin
,
S.
, and
Budak
,
E.
,
1999
, “
Analytical Stability Prediction and Design of Variable Pitch Cutters
,”
ASME J. Manuf. Sci. Eng.
,
121
(
2
), pp.
173
178
. 10.1115/1.2831201
76.
Olgac
,
N.
, and
Sipahi
,
R.
,
2007
, “
Dynamics and Stability of Variable-Pitch Milling
,”
J. Vib. Contr.
,
13
(
7
), pp.
1031
1043
. 10.1177/1077546307078754
77.
Budak
,
E.
,
2003
, “
An Analytical Design Method for Milling Cutters With Nonconstant Pitch to Increase Stability, Part I: Theory
,”
ASME J. Manuf. Sci. Eng.
,
125
(
1
), pp.
29
34
. 10.1115/1.1536655
78.
Iglesias
,
A.
,
Dombovari
,
Z.
,
Gonzalez
,
G.
,
Munoa
,
J.
, and
Stepan
,
G.
,
2019
, “
Optimum Selection of Variable Pitch for Chatter Suppression in Face Milling Operations
,”
Materials
,
12
(
1
), p.
112
. 10.3390/ma12010112
79.
Comak
,
A.
, and
Budak
,
E.
,
2017
, “
Modeling Dynamics and Stability of Variable Pitch and Helix Milling Tools for Development of a Design Method to Maximize Chatter Stability
,”
Precis. Eng.
,
47
, pp.
459
468
. 10.1016/j.precisioneng.2016.09.021
80.
Sims
,
N. D.
,
Mann
,
B.
, and
Huyanan
,
S.
,
2008
, “
Analytical Prediction of Chatter Stability for Variable Pitch and Variable Helix Milling Tools
,”
J. Sound Vib.
,
317
(
3
), pp.
664
686
. 10.1016/j.jsv.2008.03.045
81.
Turner
,
S.
,
Merdol
,
D.
,
Altintas
,
Y.
, and
Ridgway
,
K.
,
2007
, “
Modelling of the Stability of Variable Helix End Mills
,”
Int. J. Mach. Tools Manuf.
,
47
(
9
), pp.
1410
1416
. 10.1016/j.ijmachtools.2006.08.028
82.
Dombovari
,
Z.
, and
Stépán
,
G.
,
2012
, “
The Effect of Helix Angle Variation on Milling Stability
,”
ASME J. Manuf. Sci. Eng.
,
134
(
5
), p.
051015
. 10.1115/1.4007466
83.
Merdol
,
S. D.
, and
Altintas
,
Y.
,
2004
, “
Mechanics and Dynamics of Serrated Cylindrical and Tapered End Mills
,”
ASME J. Manuf. Sci. Eng.
,
126
(
2
), pp.
317
326
. 10.1115/1.1644552
84.
Dombovari
,
Z.
,
Altintas
,
Y.
, and
Stepan
,
G.
,
2010
, “
The Effect of Serration on Mechanics and Stability of Milling Cutters
,”
Int. J. Mach. Tools Manuf.
,
50
(
6
), pp.
511
520
. 10.1016/j.ijmachtools.2010.03.006
85.
Tehranizadeh
,
F.
,
Koca
,
R.
, and
Budak
,
E.
,
2019
, “
Investigating Effects of Serration Geometry on Milling Forces and Chatter Stability for Their Optimal Selection
,”
Int. J. Mach. Tools Manuf.
,
144
(
103425
), pp.
1
16
. 10.1016/j.ijmachtools.2019.103425
86.
Lazoglu
,
I.
,
Vogler
,
M.
,
Kapoor
,
S. G.
, and
DeVor
,
R. E.
,
1998
, “
Dynamics of the Simultaneous Turning Process
,”
Trans. Am. Res. Inst. SME
,
XXVI
, pp.
135
140
.
87.
Budak
,
E.
, and
Ozturk
,
E.
,
2011
, “
Dynamics and Stability of Parallel Turning Operations
,”
CIRP Ann.
,
60
(
1
), pp.
383
386
. 10.1016/j.cirp.2011.03.028
88.
Ozturk
,
E.
,
Comak
,
A.
, and
Budak
,
E.
,
2016
, “
Tuning of Tool Dynamics for Increased Stability of Parallel (Simultaneous) Turning Processes
,”
J. Sound Vib.
,
360
, pp.
17
30
. 10.1016/j.jsv.2015.09.009
89.
Reith
,
M. J.
,
Bachrathy
,
D.
, and
Stepan
,
G.
,
2016
, “
Optimal Detuning of a Parallel Turning System—Theory and Experiments
,”
ASME J. Dyn. Syst. Meas. Control
,
139
(
1
), p.
014503
. 10.1115/1.4034497
90.
Brecher
,
C.
,
Epple
,
A.
,
Neus
,
S.
, and
Fey
,
M.
,
2015
, “
Optimal Process Parameters for Parallel Turning Operations on Shared Cutting Surfaces
,”
Int. J. Mach. Tools Manuf.
,
95
, pp.
13
19
. 10.1016/j.ijmachtools.2015.05.003
91.
Azvar
,
M.
, and
Budak
,
E.
,
2017
, “
Multi-dimensional Chatter Stability for Enhanced Productivity in Different Parallel Turning Strategies
,”
Int. J. Mach. Tools Manuf.
,
123
, pp.
116
128
. 10.1016/j.ijmachtools.2017.08.005
92.
Shamoto
,
E.
,
Mori
,
T.
,
Sencer
,
B.
,
Suzuki
,
N.
, and
Hino
,
R.
,
2013
, “
Suppression of Regenerative Chatter Vibration in Multiple Milling Utilizing Speed Difference Method–Analysis of Double-Sided Milling and Its Generalization to Multiple Milling Operations
,”
Precis. Eng.
,
37
(
3
), pp.
580
589
. 10.1016/j.precisioneng.2013.01.003
93.
Budak
,
E.
,
Comak
,
A.
, and
Ozturk
,
E.
,
2013
, “
Stability and High Performance Machining Conditions in Simultaneous Milling
,”
CIRP Ann.
,
62
(
1
), pp.
403
406
. 10.1016/j.cirp.2013.03.141
94.
Yun
,
I. S.
,
Wilson
,
W. R. D.
, and
Ehmann
,
K. F.
,
1998
, “
Review of Chatter Studies in Cold Rolling
,”
Int. J. Mach. Tools Manuf.
,
38
(
12
), pp.
1499
1530
. 10.1016/S0890-6955(97)00133-8
95.
Thaler
,
T.
,
Krese
,
B.
, and
Govekar
,
E.
,
2015
, “
Stability Diagrams and Chatter Avoidance in Horizontal Band Sawing
,”
CIRP Ann. Manuf. Technol.
,
64
(
1
), pp.
81
84
. 10.1016/j.cirp.2015.04.081
96.
Schmitz
,
T.
, and
Donaldson
,
R.
,
2000
, “
Predicting High-Speed Machining Dynamics by Substructure Analysis
,”
CIRP Ann.
,
49
(
1
), pp.
303
308
. 10.1016/S0007-8506(07)62951-5
97.
Schmitz
,
T.
, and
Duncan
,
G. S.
,
2005
, “
Three-Component Receptance Coupling Substructure Analysis for Tool Point Dynamics Prediction
,”
ASME J. Manuf. Sci. Eng.
,
127
(
4
), pp.
781
790
. 10.1115/1.2039102
98.
Cheng
,
C.-H.
,
Duncan
,
G. S.
, and
Schmitz
,
T.
,
2007
, “
Rotating Tool Point Frequency Response Prediction Using RCSA
,”
Mach. Sci. Technol.
,
11
(
3
), pp.
433
446
.
99.
Ozsahin
,
O.
, and
Altintas
,
Y.
,
2015
, “
Prediction of Frequency Response Function (FRF) of Asymmetric Tools From the Analytical Coupling of Spindle and Beam Models of Holder and Tool
,”
Int. J. Mach. Tools Manuf.
,
92
, pp.
31
40
. 10.1016/j.ijmachtools.2015.03.001
100.
Comak
,
A.
,
Ozsahin
,
O.
, and
Altintas
,
Y.
,
2016
, “
Stability of Milling Operations With Asymmetric Cutter Dynamics in Rotating Coordinates
,”
ASME J. Manuf. Sci. Eng.
,
138
(
8
). 10.1115/1.4032585
101.
Namazi
,
M.
,
Altintas
,
Y.
,
Abe
,
T.
, and
Rajapakse
,
N.
,
2007
, “
Modeling and Identification of Tool Holder-Spindle Interface Dynamics
,”
Int. J. Mach. Tools Manuf.
,
47
(
9
), pp.
1333
1341
. 10.1016/j.ijmachtools.2006.08.003
102.
Postel
,
M.
,
Özsahin
,
O.
, and
Altintas
,
Y.
,
2018
, “
High Speed Tooltip FRF Predictions of Arbitrary Tool-Holder Combinations Based on Operational Spindle Identification
,”
Int. J. Mach. Tools Manuf.
,
129
, pp.
48
60
. 10.1016/j.ijmachtools.2018.03.004
103.
Ozsahin
,
O.
,
Budak
,
E.
, and
Ozguven
,
H. N.
,
2015
, “
In-process Tool Point FRF Identification Under Operational Conditions Using Inverse Stability Solution
,”
Int. J. Mach. Tools Manuf.
,
89
, pp.
64
73
. 10.1016/j.ijmachtools.2014.09.014
104.
Law
,
M.
,
Phani
,
A. S.
, and
Altintas
,
Y.
,
2013
, “
Position-Dependent Multibody Dynamic Modeling of Machine Tools Based on Improved Reduced Order Models
,”
ASME J. Manuf. Sci. Eng.
,
135
(
2
), p.
021008
. 10.1115/1.4023453
105.
Cordes
,
M.
,
Hintze
,
W.
, and
Altintas
,
Y.
,
2019
, “
Chatter Stability in Robotic Milling
,”
Robot Comput Integr Manuf.
,
55
, pp.
11
18
. 10.1016/j.rcim.2018.07.004
106.
Law
,
M.
,
Ihlenfeldt
,
S.
,
Wabner
,
M.
,
Altintas
,
Y.
, and
Neugebauer
,
R.
,
2013
, “
Position-dependent Dynamics and Stability of Serial-Parallel Kinematic Machines
,”
CIRP Ann. Manuf. Technol.
,
62
(
1
), pp.
375
378
. 10.1016/j.cirp.2013.03.134
107.
Tuysuz
,
O.
, and
Altintas
,
Y.
,
2018
, “
Time-Domain Modeling of Varying Dynamic Characteristics in Thin-Wall Machining Using Perturbation and Reduced-Order Substructuring Methods
,”
ASME J. Manuf. Sci. Eng.
,
140
(
1
), p.
011015
. 10.1115/1.4038000
108.
Moriwaki
,
T.
,
2008
, “
Multi-functional Machine Tool
,”
CIRP Ann.
,
57
(
2
), pp.
736
749
. 10.1016/j.cirp.2008.09.004
109.
Comak
,
A.
, and
Altintas
,
Y.
,
2018
, “
Dynamics and Stability of Turn-Milling Operations With Varying Time Delay in Discrete Time Domain
,”
ASME J. Manuf. Sci. Eng.
,
140
(
10
). 10.1115/1.4040726
110.
Iglesias
,
A.
,
Munoa
,
J.
, and
Ciurana
,
J.
,
2014
, “
Optimisation of Face Milling Operations With Structural Chatter Using a Stability Model Based Process Planning Methodology
,”
Int. J. Adv. Manuf. Technol.
,
70
(
1–4
), pp.
559
571
. 10.1007/s00170-013-5199-z
111.
Jin
,
X.
, and
Altintas
,
Y.
,
2013
, “
Chatter Stability Model of Micro-Milling With Process Damping
,”
ASME J. Manuf. Sci. Eng.
,
135
(
3
), p.
031011
. 10.1115/1.4024038
112.
Ahmadi
,
K.
, and
Altintas
,
Y.
,
2013
, “
Stability of Lateral, Torsional and Axial Vibrations in Drilling
,”
Int. J. Mach. Tools Manuf.
,
68
, pp.
63
74
. 10.1016/j.ijmachtools.2013.01.006
113.
Wan
,
M.
,
Kilic
,
Z. M.
, and
Altintas
,
Y.
,
2015
, “
Mechanics and Dynamics of Multifunctional Tools
,”
ASME J. Manuf. Sci. Eng.
,
137
(
1
), p.
011019
. 10.1115/1.4028749
114.
Kilic
,
Z. M.
, and
Altintas
,
Y.
,
2016
, “
Generalized Mechanics and Dynamics of Metal Cutting Operations for Unified Simulations
,”
Int. J. Mach. Tools Manuf.
,
104
, pp.
1
13
. 10.1016/j.ijmachtools.2016.01.006
115.
Khoshdarregi
,
M. R.
, and
Altintas
,
Y.
,
2018
, “
Dynamics of Multipoint Thread Turning-Part I: General Formulation
,”
ASME J. Manuf. Sci. Eng.
,
140
(
6
), p.
061003
. 10.1115/1.4038570
116.
Katz
,
A.
,
Erkorkmaz
,
K.
, and
Ismail
,
F.
,
2018
, “
Virtual Model of Gear Shaping—Part I: Kinematics, Cutter–Workpiece Engagement, and Cutting Forces
,”
ASME J. Manuf. Sci. Eng.
140
(
7
), p.
071007
. 10.1115/1.4039646
117.
No
,
T.
,
Gomez
,
M.
,
Copenhaver
,
R.
,
Uribe Perez
,
J.
,
Tyler
,
C.
, and
Schmitz
,
T.
,
2019
, “
Force and Stability Modeling for Non-Standard Edge Geometry Endmills
,”
ASME J. Manuf. Sci. Eng.
,
141
(
12
), p.
121002
. 10.1115/1.4045057
You do not currently have access to this content.