Abstract

We present experimental results on the instrumented Vickers micro-indentation and compression of solutionized Ni-rich NiTi single crystals. The tests are conducted at room temperature where the solutionized Ti-50.9 at percent Ni material is 18 degrees above Af and the solutionized Ti-51.5 at percent Ni material is more than 100 degrees above Af. Aside from elastic deformation, it is discovered that dislocation motion and a reversible stress-induced martensitic transformation influence the micro-indentation response of Ti-50.9 at percent Ni, while the micro-indentation of Ti-51.5 at percent Ni only induces irreversible dislocation motion. The effect of the surface normal orientation on material hardness was negligible in the Ti-51.5 at percent Ni and followed trends anticipated by the activation of favorable slip systems in the Ti-50.9 at percent Ni. Compression tests on the identical Ti-50.9 at percent Ni samples revealed deformation by coupled stress-induced martensite and plastic flow, depending on the crystallographic orientation. The trends in hardness with surface normal orientation were not commensurate with the orientation dependence of the uniaxial compressive transformation or “yield” strength. The ramifications of the results in terms of comparing micro-indentation and macro-compression and the interactions between plasticity and the stress-induced martensitic transformation are discussed.

1.
Wayman
,
C. M.
,
1980
,
J. Metals
,
32
, June, pp.
129
137
.
2.
Knowles
,
K. M.
, and
Smith
,
D. A.
,
1981
,
Acta Metall.
,
29
, pp.
101
110
.
3.
Matsumoto
,
O.
,
Miyazaki
,
S.
,
Otsuka
,
K.
, and
Tamura
,
H.
,
1987
,
Acta Metall.
,
35
, pp.
2137
2144
.
4.
Otsuka, K., and Wayman, C. M., 1988, Shape Memory Materials, Cambridge University Press, UK.
5.
Melton
,
K. N.
, and
Mercier
,
O.
,
1979
,
Acta Metall.
,
27
, pp.
137
144
.
6.
Miyazaki
,
S.
,
Imai
,
T.
,
Igo
,
Y.
, and
Otsuka
,
K.
,
1986
,
Metall. Mater. Trans. A
,
17
, p.
115
115
.
7.
Lim
,
T. J.
, and
McDowell
,
D. L.
,
1995
,
J. Intell. Mater. Syst. Struct.
,
6
, p.
817
817
.
8.
Strnadel
,
B.
,
Ohashi
,
S.
,
Ohtsuka
,
H.
,
Ishihara
,
T.
, and
Miyazaki
,
S.
,
1995
,
Mater. Sci. Eng., A
,
202
, p.
148
148
.
9.
Strnadel
,
B.
,
Ohashi
,
S.
,
Ohtsuka
,
H.
,
Miyazaki
,
S.
, and
Ishihara
,
T.
,
1995
,
Mater. Sci. Eng., A
,
203
, p.
187
187
.
10.
Tobushi
,
H.
,
Hachisuka
,
T.
,
Yamada
,
S.
, and
Lin
,
P.-H.
,
1997
,
Mech. Mater.
,
26
, p.
35
35
.
11.
Lim
,
T. J.
, and
McDowell
,
D. L.
,
1999
,
ASME J. Eng. Mater. Technol.
,
121
, p.
9
9
.
12.
Li
,
Y.
,
Wu
,
X. F.
, and
Ko
,
T.
,
1991
,
Philos. Mag. A
,
63
, p.
603
603
.
13.
Stroz
,
D.
,
Bojarski
,
Z.
,
Ilczuk
,
J.
,
Lekston
,
Z.
, and
Morawiec
,
H.
,
1991
,
J. Mater. Sci. Lett.
,
26
, p.
1741
1741
.
14.
Jordan
,
L.
,
Masse
,
M.
,
Collier
,
J.-Y.
, and
Bouquet
,
G.
,
1994
,
J. Alloys Compd.
,
211
, p.
204
204
.
15.
McCormick
,
P. G.
, and
Liu
,
Y.
,
1994
,
Acta Metall. Mater.
,
42
, p.
2407
2407
.
16.
Tobushi
,
H.
,
Ohashi
,
Y.
,
Hori
,
T.
, and
Yamamoto
,
H.
,
1992
,
Exp. Mech.
,
32
, p.
304
304
.
17.
Tamura
,
H.
,
Mitose
,
K.
, and
Suzuki
,
Y.
,
1995
,
J. De Phys. IV
,
5
, p.
C8
617
617
.
18.
Bigeon
,
M.
, and
Morin
,
M.
,
1995
,
J. De Phys. IV
,
5
, p.
C2
385
385
.
19.
Tobushi
,
H.
,
Hachisuka
,
T.
,
Hashimoto
,
T.
, and
Yamada
,
S.
,
1998
,
ASME J. Eng. Mater. Technol.
,
120
, p.
64
64
.
20.
Bo
,
Z. H.
, and
Lagoudas
,
D. C.
,
1999
,
Int. J. Eng. Sci.
,
37
, p.
1089
1089
.
21.
Lagoudas
,
D. C.
, and
Bo
,
Z. H.
,
1999
,
Int. J. Eng. Sci.
,
37
, p.
1141
1141
.
22.
Bo
,
Z. H.
, and
Lagoudas
,
D. C.
,
1999
,
Int. J. Eng. Sci.
,
37
, p.
1175
1175
.
23.
Bo
,
Z. H.
, and
Lagoudas
,
D. C.
,
1999
,
Int. J. Eng. Sci.
,
37
, p.
1205
1205
.
24.
Gall
,
K.
,
Sehitoglu
,
H.
,
Chumlyakov
,
Y. I.
, and
Kireeva
,
I.
,
1999
,
Scr. Mater.
,
40
, p.
7
7
.
25.
Xie
,
Z.
,
Liu
,
Y.
, and
Van Humbeeck
,
J
.,
1998
,
Acta Mater.
,
46
, p.
1989
1989
.
26.
Rogers
,
C. A.
,
1995
,
J. Intell. Mater. Syst. Struct.
,
6
, p.
4
4
.
27.
Proceedings, SPIE 7th International Symposium, Smart Structures and Materials, 2000, March, Newport Beach, CA.
28.
Krulevitch
,
P.
,
Lee
,
A. P.
,
Ramsey
,
P. B.
,
Trevino
,
J.
, and
Northrup
,
M. A.
,
1996
,
Microelectromechanical Systems (MEMS)
,
59
, pp.
301
306
.
29.
Kahn
,
H.
,
Benard
,
W. L.
,
Huff
,
M. A.
, and
Heuer
,
A. H.
,
1997
,
Mat. Res. Soc. Proc.
, Vol.
444
, pp.
227
232
.
30.
Johnson
,
A. D.
,
1999
,
Micromachine Devices
,
4
, p.
1
1
.
31.
Ishida
,
A.
, and
Miyazaki
,
S.
,
1999
,
ASME J. Eng. Mater. Technol.
,
121
, pp.
2
8
.
32.
Chumlyakov
,
Y. I.
,
Surikova
,
N. S.
, and
Korotaev
,
A. D.
,
1996
,
Phys. Met. Metallogr.
,
82
, p.
102
102
.
33.
Miracle
,
D. B.
,
1993
,
Acta Metall. Mater.
,
41
, pp.
649
684
.
34.
Ludwig
,
M.
, and
Gumbsch
,
P.
,
1998
,
Acta Mater.
,
46
, p.
3135
3135
.
35.
Sehitoglu
,
H.
,
Karaman
,
I.
,
Anderson
,
R.
,
Zhang
,
X.
,
Gall
,
K.
,
Maier
,
H. J.
, and
Chumlyakov
,
Y. I.
,
2000
,
Acta Metall. Mater.
,
48
, pp.
3311
3326
.
36.
Ball
,
J. M.
, and
James
,
R. D.
,
1987
,
Arch. Ration. Mech. Anal.
,
100
, pp.
13
52
.
37.
Nishida
,
M.
,
Wayman
,
C. M.
, and
Chiba
,
A.
,
1988
,
Metall.
,
21
, pp.
275
291
.
38.
Onda
,
T.
,
Bando
,
Y.
,
Ohba
,
T.
, and
Otsuka
,
K.
,
1992
,
Mat. Trans. JIM
,
33
, pp.
354
359
.
39.
Lawn
,
B.
, and
Wilshaw
,
R.
,
1995
,
J. Mater. Sci.
,
10
, pp.
1049
1081
.
40.
Stelmashenko
,
N. A.
,
Walls
,
M. G.
,
Brown
,
L. M.
, and
Milman
,
Y. V.
,
1993
,
Acta Metall. Mater.
,
41
, pp.
2855
2865
.
41.
Liu
,
R.
,
Li
,
D. Y.
,
Xie
,
Y. S.
,
Llewellyn
,
R.
, and
Hawthorne
,
H. M.
,
1999
,
Scr. Mater.
,
41
, pp.
691
696
.
42.
Doerner
,
M. F.
, and
Nix
,
W. D.
,
1986
,
J. Mater. Res.
,
1
, pp.
601
609
.
43.
Oliver
,
W. C.
, and
Pharr
,
G. M.
,
1992
,
J. Mater. Res.
,
7
, pp.
1564
1583
.
44.
Gall
,
K.
, and
Sehitoglu
,
H.
,
1999
,
Int. J. Plast.
,
15
, pp.
69
92
.
You do not currently have access to this content.