The compressive response of a NiTi shape-memory alloy is investigated at various strain rates using UCSD’s modified 12-in. Hopkinson pressure bar and a conventional Instron machine. To obtain a constant strain rate during the formation of a stress-induced martensite in a Hopkinson test, a copper tube of suitable dimensions is employed as a pulse shaper, since without a pulse shaper the strain rate of the sample varies significantly as its microstructure changes from austenite to martensite, whereas with proper pulse shaping techniques a nearly constant strain rate can be achieved over a certain deformation range. The NiTi shape-memory alloy shows a superelastic response for small strains at all considered strain rates and at room temperature, 296 K. At this temperature and below a certain strain rate, the stress–strain curves of the NiTi shape-memory alloy display two regimes: an elastic austenite regime and a transition (stress-induced martensite) regime. The transition stress of this material and the work-hardening rate in the stress-induced martensite regime increase with increasing strain rate, the latter reaching a steady state level and then rapidly increasing.

1.
Otsuka, K., and Wayman, C. M., 1998, Shape Memory Materials, Cambridge University Press, Cambridge, UK.
2.
Van Humbeeck
,
J.
,
2001
, “
Shape Memory Alloys: A Material and a Technology
,”
Adv. Eng. Mater.
,
3
, pp.
143
156
.
3.
Dolce
,
M.
, and
Cardone
,
D.
,
2001
, “
Mechanical Behavior of Shape Memory Alloys for Seismic Applications 2: Austenitic NiTi Wires Subjected to Tension
,”
Int. Mech. Sci.
,
43
, pp.
2657
2677
.
4.
Duerig
,
T. W.
,
Pelton
,
A.
, and
Stockel
,
D.
,
1999
, “
An Overview of Nitinol Medical Applications
,”
Mater. Sci. Eng., A
,
237A–275A
, pp.
149
160
.
5.
Otsuka
,
K.
, and
Ren
,
X.
,
1999a
, “
Martensitic Transformation in Nonferrous Shape Memory Alloys
,”
Mater. Sci. Eng., A
,
273A–275A
, pp.
89
105
.
6.
Otsuka
,
K.
, and
Ren
,
X.
,
1999b
, “
Recent Developments in the Research of Shape Memory Alloys
,”
Intermetallics
,
7
, pp.
511
528
.
7.
Van Humbeeck
,
J.
,
1999
, “
Non-Medical Applications of Shape Memory Alloys
,”
Mater. Sci. Eng., A
,
237A–275A
, pp.
134
148
.
8.
Otsuka
,
K.
, and
Shimizu
,
K.
,
1986
, “
Pseudoelasticity and Shape Memory Effects in Alloys
,”
Int. Met. Rev.
,
31
, pp.
93
114
.
9.
Jacobus
,
K.
,
Sehitoglu
,
H.
, and
Balzer
,
M.
,
1996
, “
Effect of Stress State on the Stress-Induced Martensitic Transformation in Polycrystalline Ni–Ti alloy
,”
Metall. Mater. Trans. A
,
27A
, pp.
3066
3073
.
10.
Lin
,
P.-H.
,
Tobushi
,
H.
,
Tanaka
,
K.
,
Hattori
,
T.
, and
Ikai
,
A.
,
1996
, “
Influence of Strain Rate on Deformation Properties of TiNi Shape Memory Alloy
,”
JSME Int. J.
,
39A
,
117
123
.
11.
Tobushi
,
H.
,
Takata
,
K.
,
Shimeno
,
Y.
,
Nowacki
,
W. K.
, and
Gadaj
,
S. P.
,
1999
, “
Influence of Strain Rate on Superelastic Behavior of TiNi Shape Memory Alloy
,”
Proc. Inst. Mech. Eng., Part L
,
213
, pp.
93
102
.
12.
Shaw
,
J. A.
, and
Kyriakides
,
S.
,
1995
, “
Thermomechanical Aspects of NiTi
,”
J. Mech. Phys. Solids
,
43
, pp.
1243
1281
.
13.
Ogawa
,
K.
,
1988
, “
Characteristics of Shape Memory Alloy at High Strain Rate
,”
J. Phys. C
,
3
, pp.
115
120
.
14.
Ogawa
,
K.
,
1991
, “
Dynamic Behavior of Shape Memory Material
,”
J. Phys. IV
,
C3
, pp.
215
221
.
15.
Chen
,
W. W.
,
Wu
,
Q.
,
Kang
,
J. H.
, and
Winfree
,
N. A.
,
2001
, “
Compressive Superelastic Behavior of a NiTi Shape Memory Alloy at Strain Rates of 0.001–750 S−1,
Int. J. Solids Struct.
,
38
, pp.
8989
8998
.
16.
Millett
,
J. C. F.
,
Bourne
,
N. K.
, and
Gray, III
,
G. T.
,
2002
, “
Behavior of the Shape Memory Alloy NiTi during One-Dimensional Shock Loading
,”
J. Appl. Phys.
,
92
, pp.
3107
3110
.
17.
Liu
,
Y.
,
Li
,
Y.
, and
Ramesh
,
K. T.
,
2002
, “
Rate Dependence of Deformation Mechanisms in Shape-Memory Alloys
,”
Philos. Mag. A
,
82
, pp.
2461
2473
.
18.
Liu
,
Y.
,
Li
,
Y.
,
Xie
,
Z.
, and
Ramesh
,
K. T.
,
2002
, “
Dynamic Deformation of Shape-Memory Alloys: Evidence of Domino Detwinning?
,”
Philos. Mag. Lett.
,
82
, pp.
511
517
.
19.
Nemat-Nasser
,
S.
,
Isaacs
,
J. B.
, and
Starrett
,
J. E.
,
1991
, “
Hopkinson Techniques for Dynamic Recovery Experiments
,”
Proc. R. Soc. London, Ser. A
,
435
, pp.
371
391
.
20.
Nemat-Nasser
,
S.
, and
Isaacs
,
J. B.
,
1997
, “
Direct Measurement of Isothermal Flow Stress of Metals at Elevated Temperatures and High Strain Rates with Application to Ta and Ta–W Alloys
,”
Acta Mater.
,
45
, pp.
907
919
.
21.
Wollants
,
P.
,
Roos
,
J. R.
, and
Delaey
,
L.
,
1993
, “
Thermally- and Stress-Induced Thermoelastic Martensitic Transformations in the Reference Frame of Equilibrium Thermodynamics
,”
Prog. Mater. Sci.
,
37
, pp.
227
288
.
22.
Bever
,
M. B.
,
Holt
,
D. L.
, and
Titchener
,
A. L.
,
1973
, “
The Stored Energy of Cold Work
,”
Prog. Mater. Sci.
,
17
, pp.
5
177
.
23.
Kapoor
,
R.
, and
Nemat-Nasser
,
S.
,
1998
, “
Determination of Temperature Rise During High Strain Rate Deformation
,”
Mech. Mater.
,
27
, pp.
1
12
.
24.
Leo
,
P. H.
,
Shield
,
T. W.
, and
Bruno
,
O. P.
,
1993
, “
Transient Heat Transfer Effects on the Pseudoelastic Behavior of Shape-Memory Wires
,”
Acta Metall. Mater.
,
41
, pp.
2477
2485
.
25.
McCormick
,
P. G.
,
Liu
,
Y.
, and
Miyazaki
,
S.
,
1993
, “
Intrinsic Thermal-Mechanical Behavior Associated with the Stress-Induced Matensitic Transformation in NiTi
,”
Mater. Sci. Eng., A
,
167
, pp.
51
56
.
26.
Tobushi
,
H.
,
Shimeno
,
Y.
,
Hachisuka
,
T.
, and
Tanak
,
K.
,
1998
, “
Influence of Strain Rate on Superelastic Properties of TiNi Shape Memory Alloy
,”
Mech. Mater.
,
30
, pp.
141
150
.
27.
Olson
,
G. B.
, and
Cohen
,
M.
,
1979
, “
Interface-Boundary Dislocations and the Concept of Coherency
,”
Acta Metall.
,
27
, pp.
1907
1918
.
28.
Grujicic
,
M.
,
Olson
,
G. B.
, and
Owen
,
W. S.
,
1982
, “
Kinetics of Martensitic Interface Motion
,”
J. Phys. C
,
4
, pp.
173
178
.
29.
Grujicic
,
M.
,
Olson
,
G. B.
, and
Owen
,
W. S.
,
1985
, “
Mobility of Martensitic Interfaces
,”
Metall. Trans. A
,
16A
, pp.
1713
1722
.
You do not currently have access to this content.