In reliability-based design (RBD), uncertainties are usually treated stochastically, and nondeterministic variables are assumed to follow certain probability distributions. However, in many practical engineering applications, distributions of some random variables may not be precisely known or uncertainties may not be appropriately represented with distributions. The possible values of those nondeterministic variables are often only known to lie within specified intervals without precise distribution information. In this paper, we attempt to address this issue by proposing a RBD method to deal with the uncertain variables characterized by the mixture of probability distributions and intervals. The reliability is considered under the condition of the worst case combination of interval variables. The computational demand of RBD with the mixture of random and interval variables may increase dramatically due to the need for identifying the worst case interval variables. To alleviate the computational burden, a sequential single-loop procedure is employed to replace the computationally expensive double-loop procedure when the worst case scenario is applied directly. With the proposed method, the RBD is conducted within a series of cycles of deterministic optimization and reliability analysis. The optimization model in each cycle is built based on the most probable point under the worst case combination of the interval variables obtained from the reliability analysis in the previous cycle. Since the optimization is decoupled from the probabilistic analysis, the computational amount for reliability analysis is decreased to the minimum extent. The proposed method is demonstrated with two examples.

1.
Taguchi
,
G.
, 1993,
Taguchi on Robust Technology Development: Bringing Quality Engineering Upstream
,
ASME
, New York.
2.
Melchers
,
R. E.
, 1999,
Structural Reliability Analysis and Prediction
,
Wiley
, Chichester, UK.
3.
Zang
,
T. A.
,
Hemsch
,
M. J.
,
Hilburger
,
M. W.
,
Kenny
,
S. P.
,
Luckring
,
J. M.
,
Maghami
,
P.
,
Padula
,
S. L.
, and
Stroud
,
W. J.
, 2002, “
Needs and Opportunities for Uncertainty-Based Multidisciplinary Design Methods for Aerospace Vehicles
,” NASA/TM–2002–211462.
4.
Meeker
,
W. Q.
, and
Escobar
,
L. A.
, 1998,
Statistical Methods for Reliability Data
,
Wiley
, New York.
5.
Mahadevan
,
S.
, 1997, “
Physics-Based Reliability Models
,” in
Reliability-Based Mechanical Design
,
Cruse
,
T. A.
, ed.,
Dekker
, New York.
6.
Yang
,
R. J.
,
Gu
,
L.
,
Liaw
,
L.
,
Gearhart
,
C.
,
Tho
,
C. H.
, and
Wang
,
B. P.
, 2000, “
Approximations for Safety Optimization of Large Systems
,”
26th ASME Design Automation Conference
,
Baltimore
, MD.
7.
Wang
,
L.
,
Grandhi
,
R. V.
, and
Hopkins
,
D. A.
, 1995, “
Structural Reliability Optimization Using an Efficient Safety Index Calculation Procedure
,”
Int. J. Numer. Methods Eng.
0029-5981,
38
(
10
), pp.
171
1738
.
8.
Ferson
,
S.
,
Joslyn
,
C. A.
,
Helton
,
J. C.
,
Oberkampf
,
W. L.
, and
Sentz
,
K.
, 2004, “
Summary from the Epistemic Uncertainty Workshop: Consensus amid Diversity
,”
Reliability Eng. Sys. Safety
0951-8320,
85
(
1–3
), pp.
355
369
.
9.
Lombardi
,
M.
, and
Haftka
,
R. T.
, 1998, “
Anti-Optimization Technique for Structural under Load Uncertainties
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
157
(
1
), pp.
19
31
.
10.
Gu
,
X.
,
Renaud
,
J. E.
, and
Batill
,
S. M.
, 1998, “
An Investigation of Multidisciplinary Design Subject to Uncertainties
,”
Seventh AIAA/USAF/NASA/ISSMO Multidisciplinary Analysis & Optimization Symposium
,
St. Louis
, MO, pp.
309
319
.
11.
Du
,
X.
, and
Chen
,
W.
, 2000, “
An Integrated Methodology for Uncertainty Propagation and Management in Simulation-Based Systems Design
,”
AIAA J.
0001-1452,
38
(
8
), pp.
1471
1478
.
12.
Rao
,
S. S.
, and
Cao
,
L.
, 2002, “
Optimum Design of Mechanical Systems Involving Interval Parameters
,”
J. Mech. Des.
1050-0472,
124
(
3
), pp.
465
472
.
13.
Pownuk
,
A.
, 2004, “
Efficient Method of Solution of Large Scale Engineering Problems with Interval Parameters
,”
Proc. of the NSF Workshop on Reliable Engineering Computing
, Savannah, GA, 15–17 September, 2004, Savannah, GA, pp.
3015
316
.
14.
Modares
,
M.
,
Mullen
,
R.
,
Muhanna
,
R. L.
, and
Zhang
,
H.
, 2004, “
Buckling Analysis of Structures with Uncertain Properties and Loads Using an Interval Finite Element Method
,”
Proc. of the NSF Workshop on Reliable Engineering Computing
, Savannah, GA, 15–17 September, pp.
317
328
.
15.
Pereira
,
S. C.
,
Mello
,
U. T.
,
Ebecken
,
N. M. A. D.
, and
Muhanna
,
R. L.
, 2004, “
Uncertainty in Thermal Basin Modeling: An Interval Finite Element Approach
,”
Proc. of the NSF Workshop on Reliable Engineering Computing
, Savannah, GA, 15–17 September, pp.
371
390
.
16.
Wang
,
Y.
, 2004, “
Solving Interval Constraints in Computer-Aided Design
,”
Proc. of the NSF Workshop on Reliable Engineering Computing
, 15–17 september, Savannah, GA, pp.
251
267
.
17.
Hall
,
J.
, and
Lawry
,
J.
, 2001, “
Imprecise Probabilities of Engineering System Failure from Random and Fuzzy Set Reliability Analysis
,”
Second Int. Symp. on Imprecise Probabilities and Their Applications
,
Ithaca
, New York.
18.
Starks
,
S. A.
,
Kreinovich
,
V.
,
Longpre
,
Ceberio
,
M.
,
Xiang
,
G.
,
Araiza
,
R.
,
Beck
,
J.
,
Kandathi
,
R.
,
Nayak
,
A.
, and
Torres
,
R.
, 2004, “
Towards Combining Probabilistic and Interval Uncertainty in Engineering Calculations
,”
Proc. of the NSF Workshop on Reliable Engineering Computing
, Savannah, GA, 15–17 September, pp.
193
213
.
19.
Kreinovich
,
V.
,
Beck
,
J.
,
Ferregut
,
C.
,
Sanchez
,
A.
,
Keller
,
G. R.
,
Averill
,
M.
, and
Starks
,
S. A.
, “
Monte-Carlo-Type Techniques for Processing Interval Uncertainty, and Their Engineering Applications
,”
Proc. of the NSF Workshop on Reliable Engineering Computing
, Savannah, GA, 15–17 September, pp.
139
160
.
20.
Penmetsa
,
R. C.
, and
Grandhi
,
V.
, 2002, “
Efficient Estimation of Reliability for Problems with Uncertain Intervals
,”
Comput. Struct.
0045-7949,
80
(
12
), pp.
1103
1112
.
21.
Tonon
,
F.
, 2004, “
Using Random Set Theory to Propagate Epistemic Uncertainty Through a Mechanical System
,”
Reliability Eng. Sys. Safety
0951-8320,
85
(
1–3
), pp.
169
181
.
22.
Agarwal
,
H.
,
Renaud
,
J. E.
,
Preston
,
E. L.
, and
Padmanabhan
,
D.
, 2004, “
Uncertainty Quantification Using Evidence Theory in Multidisciplinary Design Optimization
,”
Reliability Eng. Sys. Safety
0951-8320,
85
(
1–3
), pp.
281
294
.
23.
Helton
,
J. C.
,
Johnson
,
J. D.
, and
Oberkampf
,
W. L.
, 2004, “
An Exploration of Alternative Approaches to the Representation of Uncertainty in Model Predictions
,”
Reliability Eng. Sys. Safety
0951-8320,
85
(
1–3
), pp.
39
71
.
24.
Fetz
,
T.
, and
Oberguggenberger
,
M.
, 2004, “
Propagation of Uncertainty Through Multivariate Functions in the Framework of Sets of Probability Measures
,”
Reliability Eng. Sys. Safety
0951-8320,
85
(
1–3
), pp.
73
87
.
25.
Kreinovich
,
V.
,
Lakeyev
,
A.
,
Rohn
,
J.
, and
Kahl
,
P.
, 1997,
Computational Complexity and Feasibility of Data Processing and Interval Computations
,
Kluwer
, Dordrecht.
26.
Hasofer
,
A. M.
, and
Lind
,
N. C.
, 1974, “
Exact and Invariant Second-Moment Code Format
,” ASCE
J. Eng. Mech. Div.
0044-7951,
100
(
EM1
), pp.
111
121
.
27.
Breitung
,
K.
, 1984, “
Asymptotic Approximations for Multinormal Integrals
,”
J. Eng. Mech.
0733-9399,
110
(
3
), pp.
357
366
.
28.
Du
,
X.
, and
Sudjianto
,
A.
, 2004, “
The First Order Saddlepoint Approximation for Reliability Analysis
,”
AIAA J.
0001-1452,
42
(
6
), pp.
1199
1207
.
29.
Rosenblatt
,
M.
, 1952, “
Remarks on a Multivariate Transformation
,”
Ann. Math. Stat.
0003-4851,
23
, pp.
470
472
.
30.
Wu
,
Y.-T.
,
Millwater
,
H. R.
, and
Cruse
,
T. A.
, 1990, “
An Advance Probabilistic Analysis Method for Implicit Performance Function
,”
AIAA J.
0001-1452,
28
(
9
), pp.
1663
1669
.
31.
Du
,
X.
, and
Chen
,
W.
, 2001, “
A Most Probable Point Based Method for Uncertainty Analysis
,”
J. Design Manuf. Autom.
1532-0375,
4
(
1
), pp.
47
66
.
32.
Tu
,
J.
,
Choi
,
K. K.
, and
Young
,
H. P.
, 1999, “
A New Study on Reliability-Based Design Optimization
,” ASME
ASME J. Mech. Des.
1050-0472,
121
(
4
), pp.
557
564
.
33.
Li
,
H.
, and
Foschi
,
R. O.
, 1998, “
An Inverse Reliability Method and Its Application
,”
Struct. Safety
0167-4730,
20
(
3
), pp.
257
270
.
34.
Der
,
Kiureghian
,
A.
,
Zhang
,
Y.
, and
Li
,
C. C.
, 1994, “
Inverse Reliability Problem
,” ASCE
J. Eng. Mech.
0733-9399,
120
(
5
), pp.
1150
1159
.
35.
Choi
,
K. K.
, and
Youn
,
B. D.
, 2001, “
Hybrid Analysis Method for Reliability-Based Design Optimization
,”
Proc. of ASME: 27th Design Automation Conference
,
Pittsburgh
, PA.
36.
Du
,
X.
, and
Chen
,
W.
, 2004, “
Sequential Optimization and Reliability Assessment Method for Efficient Probabilistic Design
,”
ASME J. Mech. Des.
1050-0472,
126
(
2
), pp.
225
233
.
37.
Tu
,
J.
,
Choi
,
K. K.
, and
Park
,
Y. H.
, 2001, “
Design Potential Method for Robust System Parameter Design
,”
AIAA J.
0001-1452,
39
(
4
), pp.
667
677
.
38.
Choi
,
K. K.
,
Tu
,
J.
, and
Park
,
Y. H.
, 2001, “
Extension of Design Potential Concept for Reliability-Based Design Optimization
,”
Struct. Multidiscip. Optim.
1615-147X,
22
(
5
), pp.
335
350
.
39.
Wu
,
Y.-T.
,
Shin
,
Y.
,
Sues
,
R.
, and
Cesare
,
M.
, 2001, “
Safety-Factor Based Approach for Probabilistic-Based Design Optimization
,”
42nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference and Exhibit
,
Seattle
, Washington.
40.
Chen
,
X.
, and
Hasselman
,
T. K.
, 1997, “
Reliability Based Structural Design Optimization for Practical Applications
,”
38th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference and Exhibit and AIAA/ASME/AHS Adaptive Structural Forum
,
Kissimmee
, FL.
41.
Wu
,
Y.-T.
, and
Wang
,
W.
, 1998, “
Efficient Probabilistic Design by Converting Reliability Constraints to Approximately Equivalent Deterministic Constraints
,”
J. Integr. Des. Process Sci.
1092-0617,
2
(
4
), pp.
13
21
.
42.
Liang
,
J.
,
Mourelatos
,
Z.
, and
Tu
,
J.
, 2004, “
A Single-Loop Method for Reliability-Based Design Optimization
,”
2004 ASME International Design Engineering Technical Conferences and Computers & Information in Engineering Conference
, DETC2004-57255,
Salt Lake City
, Utah, September 28–October 2.
You do not currently have access to this content.