Reliability and robustness are two main attributes of design under uncertainty. Hence, it is necessary to combine reliability-based design and robust design at the design stage. In this paper, a unified framework for integrating reliability-based design and robust design is proposed. In the proposed framework, the probabilistic objective function is converted to a deterministic objective function by the Taylor series expansion or inverse reliability strategy with accounting for the probabilistic characteristic of the objective function. Therefore, with this unified framework, there is no need to deal with a multiobjective optimization problem to integrate reliability-based design and robust design any more. The probabilistic constraints are converted to deterministic constraints with inverse reliability strategy at the same time. In order to solve the unified framework, an improved sequential optimization and reliability assessment method is proposed. Three examples are given to illustrate the benefits of the proposed methods.

1.
Wang
,
L.
, and
Grandhi
,
R. V.
, 1995, β€œ
Structural Reliability Optimization Using an Efficient Safety Index Calculation Procedure
,”
Int. J. Numer. Methods Eng.
0029-5981,
38
(
10
), pp.
1721
–
1738
.
2.
Youn
,
B. D.
,
Choi
,
K. K.
, and
Park
,
Y. H.
, 2003, β€œ
Hybrid Analysis Method for Reliability-Based Design Optimization
,”
ASME J. Mech. Des.
0161-8458,
125
(
2
), pp.
221
–
232
.
3.
Taguchi
,
G.
, 1993,
Taguchi on Robust Technology Development: Bringing Quality Engineering Upstream
,
ASME
,
New York
.
4.
Chen
,
W.
,
Wiecek
,
M. M.
, and
Zhang
,
J.
, 1999, β€œ
Quality Utility-A Compromise Programming Approach to Robust Design
,”
ASME J. Mech. Des.
0161-8458,
121
(
2
), pp.
179
–
187
.
5.
Du
,
X.
, and
Chen
,
W.
, 2000, β€œ
Towards a Better Understanding of Modeling Feasibility Robustness in Engineering Design
,”
ASME J. Mech. Des.
0161-8458,
122
(
4
), pp.
385
–
394
.
6.
Du
,
X.
,
Sudjianto
,
A.
, and
Chen
,
W.
, 2004, β€œ
An Integrated Framework for Optimization Under Uncertainty Using Inverse Reliability Strategy
,”
ASME J. Mech. Des.
0161-8458,
126
(
4
), pp.
562
–
570
.
7.
Mourelatos
,
Z. P.
, and
Liang
,
J.
, 2004, β€œ
An Efficient Unified Approach for Reliability and Robustness in Engineering Design
,”
NSF Workshop on Reliable Engineering Computing
, Savannah, GA.
8.
Hasofer
,
A. M.
, and
Lind
,
N. C.
, 1974, β€œ
Exact and Invariant Second-Moment Code Format
,”
J. Engrg. Mech. Div.
0044-7951,
100
, pp.
111
–
121
.
9.
Hohenbichler
,
M.
,
Gollwitzer
,
S.
,
Kruse
,
W.
, and
Rackwitz
,
R.
, 1987, β€œ
New Light on First- and Second-Order Reliability Methods
,”
Struct. Safety
0167-4730,
4
, pp.
267
–
284
.
10.
Du
,
X.
, and
Sudjiano
,
A.
, 2004, β€œ
The First Order Saddlepoint Approximation for Reliability Analysis
,”
AIAA J.
0001-1452,
42
(
6
), pp.
1199
–
1207
.
11.
Zhao
,
Y. G.
,
Alfredo
,
H. S.
, and
Ang
,
H. M.
, 2003, β€œ
System Reliability Assessment by Method of Moments
,”
J. Struct. Eng.
0733-9445,
129
(
10
), pp.
1341
–
1349
.
12.
Wang
,
P. F.
,
Byeng
,
D. Y.
, and
Lee
,
J. W.
, 2007, β€œ
Bayesian Reliability Based Optimization Using Eigenvector Dimension Reduction Method
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (IDETC/CIE)
, Las Vegas, NV, Sep. 4–7.
13.
Huang
,
B.
,
Du
,
X.
, and
Eshwarahalli
,
R.
, 2006, β€œ
A Saddlepoint Approximation Based Simulation Method for Uncertainty Analysis
,”
International Journal of Reliability and Safety
,
1
(
1/2
), pp.
206
–
224
.
14.
Kim
,
C.
, and
Choi
,
K. K.
, 2008, β€œ
Reliability-Based Design Optimization Using Response Surface Method With Prediction Interval Estimation
,”
ASME J. Mech. Des.
0161-8458,
130
(
12
), p.
121401
.
15.
Li
,
M.
,
Li
,
G.
, and
Azarm
,
S.
, 2008, β€œ
A Kriging Metamodel Assisted Multi-Objective Genetic Algorithm for Design Optimization
,”
ASME J. Mech. Des.
0161-8458,
130
(
3
), p.
031401
.
16.
Mullur
,
A. A.
, and
Messac
,
A.
, 2005, β€œ
Extended Radial Basis Function for Metamodeling: A Comparative Study
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (IDETC/CIE)
, Long Beach, CA, Sep. 24–28.
17.
Clarke
,
S. M.
,
Griehsch
,
J. H.
, and
Simpson
,
T. W.
, 2005, β€œ
Analysis of Support Vector Regression for Approximation of Complex Engineering Analysis
,”
ASME J. Mech. Des.
0161-8458,
127
(
6
), pp.
1077
–
1087
.
18.
Yang
,
R. J.
, and
Gu
,
L.
, 2004, β€œ
Experience With Approximate Reliability-Based Optimization Methods
,”
Struct. Multidiscip. Optim.
1615-147X,
26
(
1
), pp.
152
–
159
.
19.
Wang
,
L. P.
, and
Kodiyalam
,
S.
, 2002, β€œ
An Efficient Method for Probabilistic and Robust Design With Non-Normal Distributions
,”
Forty-Third AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference
, Denver, CO, Apr. 22–25.
20.
Liang
,
J. H.
,
Mourelatos
,
Z. P.
, and
Nikolaidis
,
E.
, 2007, β€œ
A Single-Loop Approach for System Reliability-Based Design Optimization
,”
ASME J. Mech. Des.
0161-8458,
129
(
12
), pp.
1215
–
1224
.
21.
Du
,
X.
,
Sudjianto
,
A.
, and
Huang
,
B.
, 2005, β€œ
Reliability-Based Design With the Mixture of Random and Interval Variables
,”
ASME J. Mech. Des.
0161-8458,
127
(
6
), pp.
1068
–
1076
.
22.
Du
,
X.
, and
Chen
,
W.
, 2004, β€œ
Sequential Optimization and Reliability Assessment for Probabilistic Design
,”
ASME J. Mech. Des.
0161-8458,
126
(
2
), pp.
225
–
233
.
23.
Du
,
X.
, 2008, β€œ
Saddlepoint Approximation for Sequential Optimization and Reliability Analysis
,”
ASME J. Mech. Des.
0161-8458,
130
(
1
), pp.
011011
.
24.
Du
,
X.
,
Guo
,
J.
, and
Beeram
,
H.
, 2007, β€œ
Sequential Optimization and Reliability Assessment for Multidisciplinary Systems Design
,”
Struct. Multidiscip. Optim.
1615-147X,
35
(
2
), pp.
117
–
130
.
25.
Putko
,
M. M.
,
Taylor
,
A. C.
, III
,
Newman
,
P. A.
, and
Green
,
L. L.
, 2002, β€œ
Approach for Input Uncertainty Propagation and Robust Design in CFD Using Sensitivity Derivatives
,”
ASME J. Fluids Eng.
0098-2202,
124
(
1
), pp.
60
–
69
.
26.
Taguchi
,
G.
, 1978, β€œ
Performance Analysis Design
,”
Int. J. Prod. Res.
0020-7543,
16
, pp.
521
–
530
.
27.
Frey
,
D. D.
,
Reber
,
G.
, and
Lin
,
Y.
, 2005, β€œ
A Quadrate-Based Sampling Technique for Robust Design With Computer Models
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (IDETC/CIE)
, Long Beach, CA, Sep. 24–28.
28.
Law
,
A. M.
, and
Kelton
,
W. D.
, 1982,
Simulation Modeling and Analysis
,
McGraw-Hill
,
New York
.
29.
Rubinstein
,
R. Y.
, 1981,
Simulation and the Monte Carlo Method
,
Wiley
,
New York
.
30.
Youn
,
B. D.
, and
Choi
,
K. K.
, 2004, β€œ
Performance Moment Integration Approach for Reliability-Based Robust Design Optimization
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (IDETC/CIE)
, Salt Lake City, UT, Sep. 28–Oct. 2.
31.
Koch
,
P. N.
, 2002, β€œ
Probabilistic Design for Six Sigma Quality
,”
Forty-Third AIAA/ASME/ASCE/AHS Structures, Structural Dynamics, and Materials Conference
, Denver, Colorado, Apr. 22–25.
32.
Wu
,
Y. T.
, and
Wang
,
W.
, 1998, β€œ
Efficient Probabilistic Design by Converting Reliability Constraints to Approximately Equivalent Deterministic Constraints
,”
J. Integr. Des. Process Sci.
1092-0617,
2
(
4
), pp.
13
–
21
.
33.
Wu
,
Y. T.
,
Shin
,
Y.
,
Sues
,
R.
, and
Cesare
,
M.
, 2001, β€œ
Safety-Factor Based Approach for Probabilistic-Based Design Optimization
,”
Forty-Second AIAA/ASME/ASCE/AHS/ASC Structure, Structural Dynamics and Materials Conference and Exhibit
, Seattle, WA, Apr. 16–19.
34.
Tu
,
J.
,
Choi
,
K. K.
, and
Young
,
H. P.
, 1999, β€œ
A New Study on Reliability-Based Design Optimization
,”
ASME J. Mech. Des.
0161-8458,
121
(
4
), pp.
557
–
564
.
35.
Youn
,
B. D.
, and
Choi
,
K. K.
, 2004, β€œ
An Investigation of Nonlinearity of Reliability-Based Design Optimization Approaches
,”
ASME J. Mech. Des.
0161-8458,
126
(
3
), pp.
403
–
411
.
36.
Laumakis
,
P. J.
, and
Harlow
,
G.
, 2002, β€œ
Structural Reliability and Monte Carlo Simulation
,”
Int. J. Math. Educ. Sci. Technol.
0020-739X,
33
, pp.
377
–
387
.
37.
Golinski
,
J.
, 1970, β€œ
Optimal Synthesis Problems Solved by Means of Nonlinear Programming and Random Methods
,”
ASME J. Mech. Des.
0161-8458,
5
(
4
), pp.
287
–
309
.
38.
Golinski
,
J.
, 1973, β€œ
An Adaptive Optimization System Applied to Machine Synthesis
,”
Mech. Mach. Theory
0094-114X,
8
(
4
), pp.
419
–
436
.
You do not currently have access to this content.