Plug-in hybrid electric vehicle (PHEV) technology has the potential to reduce operating cost, greenhouse gas (GHG) emissions, and petroleum consumption in the transportation sector. However, the net effects of PHEVs depend critically on vehicle design, battery technology, and charging frequency. To examine these implications, we develop an optimization model integrating vehicle physics simulation, battery degradation data, and U.S. driving data. The model identifies optimal vehicle designs and allocation of vehicles to drivers for minimum net life cycle cost, GHG emissions, and petroleum consumption under a range of scenarios. We compare conventional and hybrid electric vehicles (HEVs) to PHEVs with equivalent size and performance (similar to a Toyota Prius) under urban driving conditions. We find that while PHEVs with large battery packs minimize petroleum consumption, a mix of PHEVs with packs sized for 2550miles of electric travel under the average U.S. grid mix (or 3560miles under decarbonized grid scenarios) produces the greatest reduction in life cycle GHG emissions. Life cycle cost and GHG emissions are minimized using high battery swing and replacing batteries as needed, rather than designing underutilized capacity into the vehicle with corresponding production, weight, and cost implications. At 2008 average U.S. energy prices, Li-ion battery pack costs must fall below $590/kW h at a 5% discount rate or below $410/kW h at a 10% rate for PHEVs to be cost competitive with HEVs. Carbon allowance prices offer little leverage for improving cost competitiveness of PHEVs. PHEV life cycle costs must fall to within a few percent of HEVs in order to offer a cost-effective approach to GHG reduction.

1.
Bandivadekar
,
A.
,
Bodek
,
K.
,
Cheah
,
L.
,
Evans
,
C.
,
Groode
,
T.
,
Heywood
,
J.
,
Kasseris
,
E.
,
Kromer
,
M.
, and
Weiss
,
M.
, 2008, “
On the Road in 2035: Reducing Transportation’s Petroleum Consumption and GHG Emissions
,” Massachusetts Institute of Technology, Report No. LFEE 2008-05 RP.
2.
Samaras
,
C.
, and
Meisterling
,
K.
, 2008, “
Life Cycle Assessment of Greenhouse Gas Emissions From Plug-in Hybrid Vehicles: Implications for Policy
,”
Environ. Sci. Technol.
0013-936X,
42
(
9
), pp.
3170
3176
.
3.
Bureau of Transportation Statistics
, 2003, “
National Household Travel Survey 2001
,” U.S. Department of Transportation.
4.
Vlasic
,
B.
, and
Bunkley
,
N.
, 2009, “
G.M. Puts Electric Car’s City Mileage in Triple Digits
,” The New York Times, http://www.nytimes.com/2009/08/12/business/12auto.htmlhttp://www.nytimes.com/2009/08/12/business/12auto.html.
5.
Toyota
, 2009, “
2010 Prius Plug-in Hybrid Makes North American Debut at Los Angeles Auto Show
,” http://pressroom.toyota.com/pr/tms/toyota/2010-prius-plug-in-hybrid-makes-149402.aspxhttp://pressroom.toyota.com/pr/tms/toyota/2010-prius-plug-in-hybrid-makes-149402.aspx, accessed on Jul. 12, 2010.
6.
Frank
,
A. A.
, 2007, “
Plug-in Hybrid Vehicles for a Sustainable Future
,”
Am. Sci.
0003-0996,
95
(
2
), pp.
158
165
.
7.
Zhang
,
Y.
,
Lin
,
H.
,
Zhang
,
B.
, and
Mi
,
C.
, 2006, “
Performance Modeling and Optimization of a Novel Multi-Mode Hybrid Powertrain
,”
ASME J. Mech. Des.
0161-8458,
128
(
1
), pp.
79
89
.
8.
Markel
,
T.
,
Brooker
,
A.
,
Gonder
,
J.
,
O’Keefe
,
M.
,
Simpson
,
A.
, and
Thornton
,
M.
, 2006, “
Plug-in Hybrid Vehicle Analysis
,” National Renewable Energy Laboratory, Report No. NREL/MP-540-40609.
9.
Shiau
,
C. S. N.
,
Samaras
,
C.
,
Hauffe
,
R.
, and
Michalek
,
J. J.
, 2009, “
Impact of Battery Weight and Charging Patterns on the Economic and Environmental Benefits of Plug-in Hybrid Vehicles
,”
Energy Policy
0301-4215,
37
(
7
), pp.
2653
2663
.
10.
Hall
,
J. C.
,
Lin
,
T.
, and
Brown
,
G.
, 2006, “
Decay Processes and Life Predictions for Lithium Ion Satellite Cells
,”
Fourth International Energy Conversion Engineering Conference and Exhibit (IECEC)
, San Diego, CA, Jun. 26–29, Paper No. AIAA 2006-4078.
11.
Kromer
,
M. A.
, and
Heywood
,
J. B.
, 2009, “
A Comparative Assessment of Electric Propulsion Systems in the 2030 US Light-Duty Vehicle Fleet
,”
SAE Int. J. Engines
,
1
(
1
), pp.
372
391
.
12.
Markel
,
T.
, and
Simpson
,
A.
, 2006, “
Plug-in Hybrid Electric Vehicle Energy Storage System Design
,”
Advanced Automotive Battery Conference
, Baltimore, MD, May 17–19.
13.
Rosenkranz
,
K.
, 2003, “
Deep-Cycle Batteries for Plug-in Hybrid Application
,”
EVS20 Plug-In Hybrid Vehicle Workshop
, Long Beach, CA.
14.
Simpson
,
A.
, 2006, “
Cost-Benefit Analysis of Plug-in Hybrid Electric Vehicle Technology
,”
Proceedings of the 22nd International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium and Exhibition (EVS-22)
, Yokohama, Japan, Oct. 23–28.
15.
Peterson
,
S. B.
,
Whitacre
,
J. F.
, and
Apt
,
J.
, 2010, “
Lithium-Ion Battery Cell Degradation Resulting From Realistic Vehicle and Vehicle-to-Grid Utilization
,”
J. Power Sources
0378-7753,
195
(
8
), pp.
2385
2392
.
16.
Belt
,
J. R.
,
Ho
,
C. D.
,
Motloch
,
C. G.
,
Miller
,
T. J.
, and
Duong
,
T. Q.
, 2003, “
A Capacity and Power Fade Study of Li-Ion Cells During Life Cycle Testing
,”
J. Power Sources
0378-7753,
123
(
2
), pp.
241
246
.
17.
Cooper
,
A. B.
,
Georgiopoulos
,
P.
,
Kim
,
H. M.
, and
Papalambros
,
P. Y.
, 2006, “
Analytical Target Setting: An Enterprise Context in Optimal Product Design
,”
ASME J. Mech. Des.
0161-8458,
128
(
1
), pp.
4
13
.
18.
Michalek
,
J. J.
,
Papalambros
,
P. Y.
, and
Skerlos
,
S. J.
, 2004, “
A Study of Fuel Efficiency and Emission Policy Impact on Optimal Vehicle Design Decisions
,”
ASME J. Mech. Des.
0161-8458,
126
(
6
), pp.
1062
1070
.
19.
Federal Highway Administration
, 2010, “
National Household Travel Survey 2009
,” Department of Transportation, Washington, D.C.
20.
Argonne National Laboratory
, 2008, Powertrain Systems Analysis Toolkit (PSAT).
21.
Environmental Protection Agency
, 2010, “
Dynamometer Drive Schedules
,” http://www.epa.gov/nvfel/testing/dynamometer.htmhttp://www.epa.gov/nvfel/testing/dynamometer.htm, accessed on Jul. 12.
22.
Shan
,
S.
, and
Wang
,
G. G.
, 2010, “
Metamodeling for High Dimensional Simulation-Based Design Problems
,”
ASME J. Mech. Des.
0161-8458,
132
(
5
), p.
051009
.
23.
Li
,
M. L. G.
, and
Azarm
,
S.
, 2008, “
A Kriging Metamodel Assisted Multi-Objective Genetic Algorithm for Design Optimization
,”
ASME J. Mech. Des.
0161-8458,
130
(
3
), p.
031401
.
24.
Martin
,
J. D.
, 2009, “
Computational Improvements to Estimating Kriging Metamodel Parameters
,”
ASME J. Mech. Des.
0161-8458,
131
(
8
), p.
084501
.
25.
Shiau
,
C. -S. N.
,
Peterson
,
S. B.
, and
Michalek
,
J. J.
, 2010, “
Optimal Plug-in Hybrid Electric Vehicle Design and Allocation for Minimum Life Cycle Cost, Petroleum Consumption and Greenhouse Gas Emissions
,”
ASME 2010 International Design Engineering Technical Conferences
, Montreal, Quebec, Canada, Paper No. DETC2010-28198.
26.
Shiau
,
C. -S. N.
, and
Michalek
,
J. J.
, 2010, “
A Mixed-Integer Nonlinear Programming Model for Deterministic Global Optimization of Plug-in Hybrid Vehicle Design and Allocation
,”
ASME 2010 International Design Engineering Technical Conferences
, Montreal, Quebec, Canada, Paper No. IDETC2010-28064.
27.
Energy Information Administration
, 2009, “
Electric Power Annual 2007
,” U.S. Department of Energy, DOE/EIA-0348(2007), http://www.eia.doe.gov/cneaf/electricity/epa/epa.pdfhttp://www.eia.doe.gov/cneaf/electricity/epa/epa.pdf, accessed on Jul. 12, 2010.
28.
EPRI
, 2007, “
Environmental Assessment of Plug-in Hybrid Electric Vehicles. Volume 1: Nationwide Greenhouse Gas Emissions
,” Electric Power Research Institute.
29.
Weber
,
C. L.
,
Jaramillo
,
P.
,
Marriott
,
J.
, and
Samaras
,
C.
, 2010, “
Life Cycle Assessment and Grid Electricity: What Do We Know and What Can We Know?
Environ. Sci. Technol.
0013-936X,
44
(
6
), pp.
1895
1901
.
30.
Energy Information Administration
, 2008, “
Annual Energy Review 2007
,” U.S. Department of Energy, http://www.eia.doe.gov/emeu/aer/elect.htmlhttp://www.eia.doe.gov/emeu/aer/elect.html, accessed on Jul. 12, 2010.
31.
Wang
,
M.
,
Wu
,
Y.
, and
Elgowainy
,
A.
, 2007, “
GREET 1.7 Fuel-Cycle Model for Transportation Fuels and Vehicle Technologies
,” Argonne National Laboratory, Argonne, IL.
32.
Environmental Protection Agency
, 2006, “
Emission Durability Procedures and Component Durability Procedures for New Light-Duty Vehicles, Light-Duty Trucks and Heavy-Duty Vehicles; Final Rule and Proposed Rule
,” http://www.epa.gov/EPA-AIR/2006/January/Day-17/a074.pdfhttp://www.epa.gov/EPA-AIR/2006/January/Day-17/a074.pdf, accessed on Jul. 12, 2010.
33.
Neufville
,
R. D.
, 1990,
Applied Systems Analysis: Engineering Planning and Technology Management
,
McGraw-Hill
,
New York
.
34.
EPRI
, 2001, “
Comparing the Benefits and Impacts of Hybrid Electric Vehicle Options
,” Electric Power Research Institute, Palo Alto, CA.
35.
Lipman
,
T. E.
, and
Delucchi
,
M. A.
, 2006, “
A Retail and Lifecycle Cost Analysis of Hybrid Electric Vehicles
,”
Transp. Res. D
1361-9209,
11
(
2
), pp.
115
132
.
36.
Naughton
,
K.
, 2008, “
Assaulted Batteries
,” Newsweek, Jul. 2, 2008, http://www.newsweek.com/id/138808http://www.newsweek.com/id/138808, accessed on Jul. 12, 2010.
37.
Bureau of Labor Statistics
, 2009, “
Producer Price Indexes
,” U.S. Department of Labor.
38.
Whitacre
,
J. F.
, 2009, “
The Economics and Science of Materials for Lithium Ion Batteries and PEM Fuel Cells
,” Working paper, Carnegie Mellon University, Pittsburgh, PA.
39.
Duvall
,
M.
, 2004, “
Advanced Batteries for Electric-Drive Vehicles
,” Electric Power Research Institute, Palo Alto, CA.
40.
Energy Information Administration
, 2009, “
Average Retail Price of Electricity to Ultimate Customers: Total by End-Use Sector
,” U.S. Department of Energy, http://www.eia.doe.gov/cneaf/electricity/epm/table5_3.htmlhttp://www.eia.doe.gov/cneaf/electricity/epm/table5_3.html, accessed on Jul. 12, 2010.
41.
Energy Information Administration
, 2009, “
The U.S. Weekly Retail Gasoline and Diesel Prices
,” U.S. Department of Energy, http://tonto.eia.doe.gov/dnav/pet/pet_pri_gnd_dcus_nus_a.htmhttp://tonto.eia.doe.gov/dnav/pet/pet_pri_gnd_dcus_nus_a.htm, accessed on Jul. 12, 2010.
42.
Peterson
,
S. B.
,
Whitacre
,
J. F.
, and
Apt
,
J.
, 2010, “
The Economics of Using Plug-in Hybrid Electric Vehicle Battery Packs for Grid Storage
,”
J. Power Sources
0378-7753,
195
(
8
), pp.
2377
2384
.
43.
44.
Tawarmalani
,
M.
, and
Sahinidis
,
N. V.
, 2004, “
Global Optimization of Mixed-Integer Nonlinear Programs: A Theoretical and Computational Study
,”
Math. Program.
0025-5610,
99
(
3
), pp.
563
591
.
45.
Khajavirad
,
A.
, and
Michalek
,
J. J.
, 2009, “
A Deterministic Lagrangian-Based Global Optimization Approach for Quasiseparable Nonconvex Mixed-Integer Nonlinear Programs
,”
ASME J. Mech. Des.
0161-8458,
131
(
5
), p.
051009
.
46.
Rao
,
S. S.
, and
Xiong
,
Y.
, 2005, “
A Hybrid Genetic Algorithm for Mixed-Discrete Design Optimization
,”
ASME J. Mech. Des.
0161-8458,
127
(
6
), pp.
1100
1112
.
47.
Lemoine
,
D. M.
,
Kammen
,
D. M.
, and
Farrell
,
A. E.
, 2008, “
An Innovation and Policy Agenda for Commercially Competitive Plug-in Hybrid Electric Vehicles
,”
Environ. Res. Lett.
,
3
, p.
014003
.
48.
Plotkin
,
S.
, and
Singh
,
M.
, 2009, “
Multi-Path Transportation Futures Study: Vehicle Characterization and Scenario Analyses
,” Argonne National Laboratory, Report No. ANL/ESD/09-5.
49.
Yura
,
J. K.
, 2009, “
Electric Schedule E-9: Experimental Residential Time-of-Use Service for Low Emission Vehicle Customers
,” Pacific Gas and Electric Company, San Francisco, CA.
50.
National Research Council
, 2009,
Hidden Costs of Energy: Unpriced Consequences of Energy Production and Use
,
The National Academies
,
Washington, D.C.
51.
Energy Information Administration
, 2009, “
Energy Market and Economic Impacts of H.R. 2454, the American Clean Energy and Security Act of 2009
,” Department of Energy, http://www.eia.doe.gov/oiaf/servicerpt/hr2454/pdf/sroiaf%282009%2905.pdfhttp://www.eia.doe.gov/oiaf/servicerpt/hr2454/pdf/sroiaf%282009%2905.pdf, accessed on Jul. 12, 2010.
52.
U.S. Congress
, 2008, “
American Recovery and Reinvestment Act of 2009
,” http://fdsys.gpo.gov/fdsys/pkg/BILLS-111hr1ENR/pdf/BILLS-111hr1ENR.pdfhttp://fdsys.gpo.gov/fdsys/pkg/BILLS-111hr1ENR/pdf/BILLS-111hr1ENR.pdf, accessed on Jul. 12, 2010.
54.
Sovacool
,
B. K.
, 2008, “
Valuing the Greenhouse Gas Emissions From Nuclear Power: A Critical Survey
,”
Energy Policy
0301-4215,
36
(
8
), pp.
2950
2963
.
55.
Jaramillo
,
P.
,
Samaras
,
C.
,
Wakeley
,
H.
, and
Meisterling
,
K.
, 2009, “
Greenhouse Gas Implications of Using Coal for Transportation: Life Cycle Assessment of Coal-to-Liquids, Plug-in Hybrids, and Hydrogen Pathways
,”
Energy Policy
0301-4215,
37
(
7
), pp.
2689
2695
.
56.
Weisser
,
D.
, 2007, “
A Guide to Life-Cycle Greenhouse Gas (GHG) Emissions From Electric Supply Technologies
,”
Energy
0360-5442,
32
(
9
), pp.
1543
1559
.
57.
Sioshansi
,
R.
, and
Denholm
,
P.
, 2009, “
Emissions Impacts and Benefits of Plug-in Hybrid Electric Vehicles and Vehicle-to-Grid Services
,”
Environ. Sci. Technol.
0013-936X,
43
(
4
), pp.
1199
1204
.
58.
Huo
,
H.
,
Zhang
,
Q.
,
Wang
,
M. Q.
,
Streets
,
D. G.
, and
He
,
K.
, 2010, “
Environmental Implication of Electric Vehicles in China
,”
Environ. Sci. Technol.
0013-936X,
44
(
13
), pp.
4856
4861
.
59.
Dreyfus
,
M. K.
, and
Viscusi
,
W. K.
, 1995, “
Rates of Time Preference and Consumer Valuations of Automobile Safety and Fuel Efficiency
,”
J. Law Econom.
0022-2186,
38
(
1
), pp.
79
105
.
60.
Hassett
,
K. A.
, and
Metcalf
,
G.
, 1993, “
Energy Conservation Investment: Do Consumers Discount the Future Correctly?
Energy Policy
0301-4215,
21
(
6
), pp.
710
716
.
61.
Train
,
K.
, 1985, “
Discount Rates in Consumers’ Energy-Related Decisions
,”
Energy
0360-5442,
10
(
12
), pp.
1243
1253
.
62.
Kammen
,
D. M.
,
Arons
,
S. M.
,
Lemoine
,
D. M.
, and
Hummel
,
H.
, 2009, “
Cost Effectiveness of Greenhouse Gas Emission Reductions From Plug-in Hybrid Electric Vehicles
,”
Plug-in Electric Vehicles-What Role for Washington?
,
D. B.
Sandalow
, ed.,
Brookings Institution
,
Washington, D.C.
63.
Allcott
,
H.
, and
Wozny
,
N.
, 2009, “
Gasoline Prices, Fuel Economy, and the Energy Paradox
,” Working paper, MIT Department of Economics, Cambridge, MA.
64.
Bradley
,
T. H.
, and
Frank
,
A. A.
, 2009, “
Design, Demonstrations and Sustainability Impact Assessments for Plug-in Hybrid Electric Vehicles
,”
Renewable Sustainable Energy Rev.
1364-0321,
13
, pp.
115
128
.
65.
Gonder
,
J.
,
Markel
,
T.
,
Simpson
,
A.
, and
Thornton
,
M.
, 2007, “
Using GPS Travel Data to Assess the Real World Driving Energy Use of PHEVs
,”
Transportation Research Board Annual Meeting
, Washington, D.C., Jan. 21–25.
66.
Moawad
,
A.
,
Singh
,
G.
,
Hagspiel
,
S.
,
Fellah
,
M.
, and
Rousseau
,
A.
, 2009, “
Impact of Real World Drive Cycles on PHEV Fuel Efficiency and Cost for Different Powertrain and Battery Characteristics
,”
The 24th International Electric Vehicle Symposium and Exposition (EVS-24)
, Stavanger, Norway, May 13–16.
67.
Patil
,
R.
,
Adornato
,
B.
, and
Filipi
,
Z.
, 2009, “
Impact of Naturalistic Driving Patterns on PHEV Performance and System Design
,” Working paper, University of Michigan, Ann Arbor, MI.
68.
Albertus
,
P.
, and
Newman
,
J.
, 2008, “
A Simplified Model for Determining Capacity Usage and Battery Size for Hybrid and Plug-in Hybrid Electric Vehicles
,”
J. Power Sources
0378-7753,
183
(
1
), pp.
376
380
.
69.
Pesaran
,
A.
,
Markel
,
T.
,
Tataria
,
H.
, and
Howell
,
D.
, 2007, “
Battery Requirements for Plug-in Hybrid Electric Vehicles—Analysis and Rationale
,”
The 23th International Electric Vehicle Symposium (EVS-23)
, Anaheim, CA, Dec. 2–5.
70.
Struben
,
J.
, and
Sterman
,
J. D.
, 2008, “
Transition Challenges for Alternative Fuel Vehicle and Transportation Systems
,”
Environ. Plan. B: Plan. Des.
0265-8135,
35
(
6
), pp.
1070
1097
.
71.
Moura
,
S. J.
,
Callaway
,
D. S.
,
Fathy
,
H. K.
, and
Stein
,
J. L.
, 2008, “
Impact of Battery Sizing on Stochastic Optimal Power Management in Plug-in Hybrid Electric Vehicles
,”
IEEE International Conference on Vehicular Electronics and Safety, 2008
, Columbus, OH, Sept. 22–24.
You do not currently have access to this content.