In recent years, evolutionary algorithms based on the concept of “decomposition” have gained significant attention for solving multi-objective optimization problems. They have been particularly instrumental in solving problems with four or more objectives, which are further classified as many-objective optimization problems. In this paper, we first review the cause-effect relationships introduced by commonly adopted schemes in such algorithms. Thereafter, we introduce a decomposition-based evolutionary algorithm with a novel assignment scheme. The scheme eliminates the need for any additional replacement scheme, while ensuring diversity among the population of candidate solutions. Furthermore, to deal with constrained optimization problems efficiently, marginally infeasible solutions are preserved to aid search in promising regions of interest. The performance of the algorithm is objectively evaluated using a number of benchmark and practical problems, and compared with a number of recent algorithms. Finally, we also formulate a practical many-objective problem related to wind-farm layout optimization and illustrate the performance of the proposed approach on it. The numerical experiments clearly highlight the ability of the proposed algorithm to deliver the competitive results across a wide range of multi-/many-objective design optimization problems.

References

1.
von Lücken
,
C.
,
Baŕan
,
B.
, and
Brizuela
,
C.
,
2014
, “
A Survey on Multi-Objective Evolutionary Algorithms for Many-Objective Problems
,”
Comput. Optim. Appl.
,
58
(
3
), pp.
707
756
.
2.
Li
,
B.
,
Li
,
J.
,
Tang
,
K.
, and
Yao
,
X.
,
2015
, “
Many-Objective Evolutionary Algorithms: A Survey
,”
ACM Comput. Surv.
,
48
(
1
), pp.
13:1
13:35
.
3.
Trivedi
,
A.
,
Srinivasan
,
D.
,
Sanyal
,
K.
, and
Ghosh
,
A.
,
2016
, “
A Survey of Multi-Objective Evolutionary Algorithms Based on Decomposition
,”
IEEE Trans. Evol. Comput.
,
PP
(
99
), p.
1
.
4.
Zhang
,
Q.
, and
Li
,
H.
,
2007
, “
MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decomposition
,”
IEEE Trans. Evol. Comput.
,
11
(
6
), pp.
712
731
.
5.
Asafuddoula
,
M.
,
Ray
,
T.
, and
Sarker
,
R.
,
2015
, “
A Decomposition-Based Evolutionary Algorithm for Many Objective Optimization
,”
IEEE Trans. Evol. Comput.
,
19
(
3
), pp.
445
460
.
6.
Das
,
I.
, and
Dennis
,
J. E.
,
1998
, “
Normal-Boundary Intersection: A New Method for Generating the Pareto Surface in Nonlinear Multicriteria Optimization Problems
,”
SIAM J. Optim.
,
8
(
3
), pp.
631
657
.
7.
Deb
,
K.
, and
Jain
,
H.
,
2014
, “
An Evolutionary Many-Objective Optimization Algorithm Using Reference-Point-Based Nondominated Sorting Approach—Part I: Solving Problems With Box Constraints
,”
IEEE Trans. Evol. Comput.
,
18
(
4
), pp.
577
601
.
8.
Li
,
K.
,
Deb
,
K.
,
Zhang
,
Q.
, and
Kwong
,
S.
,
2015
, “
An Evolutionary Many-Objective Optimization Algorithm Based on Dominance and Decomposition
,”
IEEE Trans. Evol. Comput.
,
19
(
5
), pp.
694
716
.
9.
Yuan
,
Y.
,
Xu
,
H.
,
Wang
,
B.
, and
Yao
,
X.
,
2016
, “
A New Dominance Relation-Based Evolutionary Algorithm for Many-Objective Optimization
,”
IEEE Trans. Evol. Comput.
,
20
(
1
), pp.
16
37
.
10.
Cheng
,
R.
,
Jin
,
Y.
,
Olhofer
,
M.
, and
Sendhoff
,
B.
,
2016
, “
A Reference Vector Guided Evolutionary Algorithm for Many-Objective Optimization
,”
IEEE Trans. Evol. Comput.
,
20
(
5
), pp.
773
791
.
11.
Asafuddoula
,
M.
,
Ray
,
T.
, and
Singh
,
H. K.
,
2015
, “
Characterizing Pareto Front Approximations in Many-Objective Optimization
,”
Genetic and Evolutionary Computation Conference
, Madrid, Spain, July 11–15, pp.
607
614
.
12.
Qi
,
Y.
,
Ma
,
X.
,
Liu
,
F.
,
Jiao
,
L.
,
Sun
,
J.
, and
Wu
,
J.
,
2014
, “
MOEA/D With Adaptive Weight Adjustment
,”
Evol. Comput.
,
22
(
2
), pp.
231
264
.
13.
Ishibuchi
,
H.
,
Setoguchi
,
Y.
,
Masuda
,
H.
, and
Nojima
,
Y.
,
2016
, “
Performance of Decomposition-Based Many-Objective Algorithms Strongly Depends on Pareto Front Shapes
,”
IEEE Trans. Evol. Comput.
,
PP
(
99
), p.
1
.
14.
Sato
,
H.
,
2014
, “
Inverted PBI in MOEA/D and Its Impact on the Search Performance on Multi and Many-Objective Optimization
,”
Genetic and Evolutionary Computation Conference
, Vancouver, Canada, July 11–16,
ACM
,
New York
, pp.
645
652
.
15.
Ishibuchi
,
H.
,
Sakane
,
Y.
,
Tsukamoto
,
N.
, and
Nojima
,
Y.
,
2009
, “
Adaptation of Scalarizing Functions in MOEA/D: An Adaptive Scalarizing Function-Based Multiobjective Evolutionary Algorithm
,”
Conference on Evolutionary Multi-Criterion Optimization
, Nantes, France, Apr. 7–10,
Springer
,
Berlin
, Heidelberg, pp.
438
452
.
16.
Wang
,
Z.
,
Zhang
,
Q.
,
Zhou
,
A.
,
Gong
,
M.
, and
Jiao
,
L.
,
2016
, “
Adaptive Replacement Strategies for MOEA/D
,”
IEEE Trans. Cybern.
,
46
(
2
), pp.
474
486
.
17.
Jain
,
H.
, and
Deb
,
K.
,
2014
, “
An Evolutionary Many-Objective Optimization Algorithm Using Reference-Point Based Nondominated Sorting Approach—Part II: Handling Constraints and Extending to an Adaptive Approach
,”
IEEE Trans. Evol. Comput.
,
18
(
4
), pp.
602
622
.
18.
Cheng
,
R.
,
Jin
,
Y.
, and
Narukawa
,
K.
,
2015
, “
Adaptive Reference Vector Generation for Inverse Model Based Evolutionary Multiobjective Optimization With Degenerate and Disconnected Pareto Fronts
,”
International Conference on Evolutionary Multi-Criterion Optimization
, Guimarães, Portugal, Mar. 29–Apr. 1, Springer, Cham, Switzerland, pp.
127
140
.
19.
Miettinen
,
K.
,
2012
,
Nonlinear Multiobjective Optimization
, Vol.
12
,
Springer Science & Business Media
,
New York
.
20.
Li
,
H.
, and
Zhang
,
Q.
,
2009
, “
Multiobjective Optimization Problems With Complicated Pareto Sets, MOEA/D and NSGA-II
,”
IEEE Trans. Evol. Comput.
,
13
(
2
), pp.
284
302
.
21.
Liu
,
H. L.
,
Gu
,
F.
, and
Zhang
,
Q.
,
2014
, “
Decomposition of a Multiobjective Optimization Problem Into a Number of Simple Multiobjective Subproblems
,”
IEEE Trans. Evol. Comput.
,
18
(
3
), pp.
450
455
.
22.
Ray
,
T.
,
Singh
,
H. K.
,
Isaacs
,
A.
, and
Smith
,
W. F.
,
2009
, “
Infeasibility Driven Evolutionary Algorithm for Constrained Optimization
,”
Constraint-Handling in Evolutionary Optimization, Studies in Computational Intelligence
, Vol.
198
,
Springer
,
Berlin, Heidelberg
, pp.
147
167
.
23.
Deb
,
K.
,
Thiele
,
L.
,
Laumanns
,
M.
, and
Zitzler
,
E.
,
2005
, “
Scalable Test Problems for Evolutionary Multiobjective Optimization
,”
Evolutionary Multiobjective Optimization
,
Springer
,
London
, pp.
105
145
.
24.
Goulart
,
F.
, and
Campelo
,
F.
,
2016
, “
Preference-Guided Evolutionary Algorithms for Many-Objective Optimization
,”
Inf. Sci.
,
329
, pp.
236
255
.
25.
Deb
,
K.
,
Pratap
,
A.
,
Agarwal
,
S.
, and
Meyarivan
,
T.
,
2002
, “
A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II
,”
IEEE Trans. Evol. Comput.
,
6
(
2
), pp.
182
197
.
26.
Singh
,
H. K.
,
Ray
,
T.
, and
Sarker
,
R.
,
2013
, “
Optimum Oil Production Planning Using Infeasibility Driven Evolutionary Algorithm
,”
Evol. Comput.
,
21
(
1
), pp.
65
82
.
27.
Singh
,
H. K.
,
Alam
,
K.
, and
Ray
,
T.
,
2016
, “
Use of Infeasible Solutions During Constrained Evolutionary Search: A Short Survey
,”
Australasian Conference on Artificial Life and Computational Intelligence
, Canberra, Australia, Feb. 2–5,
Springer
,
New York
, pp.
193
205
.
28.
Das
,
S.
, and
Suganthan
,
P. N.
,
2011
, “
Differential Evolution: A Survey of the State-of-the-Art
,”
IEEE Trans. Evol. Comput.
,
15
(
1
), pp.
4
31
.
29.
Bader
,
J.
, and
Zitzler
,
E.
,
2011
, “
HypE: An Algorithm for Fast Hypervolume-Based Many-Objective Optimization
,”
Evol. Comput.
,
19
(
1
), pp.
45
76
.
30.
Auger
,
A.
,
Bader
,
J.
,
Brockhoff
,
D.
, and
Zitzler
,
E.
,
2009
, “
Theory of the Hypervolume Indicator: Optimal μ-Distributions and the Choice of the Reference Point
,” International Workshop on
ACM SIGEVO
Foundations of Genetic Algorithms, Orlando, FL, Jan. 9–11, ACM, New York, pp.
87
102
.
31.
Ishibuchi
,
H.
,
Hitotsuyanagi
,
Y.
,
Tsukamoto
,
N.
, and
Nojima
,
Y.
,
2010
, “
Many-Objective Test Problems to Visually Examine the Behavior of Multiobjective Evolution in a Decision Space
,”
International Conference on Parallel Problem Solving From Nature
, Krakow, Poland, Sept. 11–15, Springer, Berlin, Heidelberg, pp.
91
100
.
32.
While
,
L.
,
Bradstreet
,
L.
, and
Barone
,
L.
,
2012
, “
A Fast Way of Calculating Exact Hypervolumes
,”
IEEE Trans. Evol. Comput.
,
16
(
1
), pp.
86
95
.
33.
Bhattacharjee
,
K. S.
,
Singh
,
H. K.
, and
Ray
,
T.
,
2016
, “
A Novel Decomposition Based Evolutionary Algorithm for Engineering Design Optimization: Supplementary Files
,” MDO Lab, Canberra, Australia, accessed Nov. 17, 2016, http://mdolab.net/Ray/Research-Data/ADBEA_supplementary_files.zip
34.
Beume
,
N.
,
Naujoks
,
B.
, and
Emmerich
,
M.
,
2007
, “
SMS-EMOA: Multiobjective Selection Based on Dominated Hypervolume
,”
Eur. J. Oper. Res.
,
181
(
3
), pp.
1653
1669
.
35.
Zhao
,
S. Z.
,
Suganthan
,
P. N.
, and
Zhang
,
Q.
,
2012
, “
Decomposition-Based Multiobjective Evolutionary Algorithm With an Ensemble of Neighborhood Sizes
,”
IEEE Trans. Evol. Comput.
,
16
(
3
), pp.
442
446
.
36.
Musselman
,
K.
, and
Talavage
,
J.
,
1980
, “
A Trade-Off Cut Approach to Multiple Objective Optimization
,”
Oper. Res.
,
28
(
6
), pp.
1424
1435
.
37.
Ray
,
T.
,
Tai
,
K.
, and
Seow
,
K. C.
,
2001
, “
An Evolutionary Algorithm for Multiobjective Optimization
,”
Eng. Optim.
,
33
(
3
), pp.
399
424
.
38.
Asafuddoula
,
M.
,
Ray
,
T.
,
Sarker
,
R.
, and
Alam
,
K.
,
2012
, “
An Adaptive Constraint Handling Approach Embedded MOEA/D
,”
IEEE
Congress on Evolutionary Computation
, June
10
15
.
39.
Durillo
,
J.
, and
Nebro
,
A.
,
2011
, “
jMetal: A Java Framework for Multi-Objective Optimization
,”
Adv. Eng. Software
,
42
(
10
), pp.
760
771
.
40.
Simpson
,
T. W.
,
Chen
,
W.
,
Allen
,
J. K.
, and
Mistree
,
F.
,
1996
, “
Conceptual Design of a Family of Products Through the Use of the Robust Concept Exploration Method
,” International Symposium on
AIAA/USAF/NASA/ISSMO
Multidisciplinary Analysis and Optimization, Bellevue, WA, Sept. 4–6, Vol.
2
, pp.
1535
1545
.
41.
Hadka
,
D.
,
Reed
,
P. M.
, and
Simpson
,
T. W.
,
2012
, “
Diagnostic Assessment of the Borg MOEA for Many-Objective Product Family Design Problems
,”
IEEE Congress on Evolutionary Computation
, pp.
1
10
.
42.
Kusiak
,
A.
, and
Song
,
Z.
,
2010
, “
Design of Wind Farm Layout for Maximum Wind Energy Capture
,”
Renewable Energy
,
35
(
3
), pp.
685
694
.
43.
Chowdhury
,
S.
,
Zhang
,
J.
,
Messac
,
A.
, and
Castillo
,
L.
,
2012
, “
Unrestricted Wind Farm Layout Optimization (UWFLO): Investigating Key Factors Influencing the Maximum Power Generation
,”
Renewable Energy
,
38
(
1
), pp.
16
30
.
44.
Turner
,
S. D. O.
,
Romero
,
D.
,
Zhang
,
P. Y.
,
Amon
,
C.
, and
Chan
,
T. C. Y.
,
2014
, “
A New Mathematical Programming Approach to Optimize Wind Farm Layouts
,”
Renewable Energy
,
63
, pp.
674
680
.
45.
Tran
,
R.
,
Wu
,
J.
,
Denison
,
C.
,
Ackling
,
T.
,
Wagner
,
M.
, and
Neumann
,
F.
,
2013
, “
Fast and Effective Multi-Objective Optimisation of Wind Turbine Placement
,”
International Conference on Genetic and Evolutionary Computation
, Amsterdam, The Netherlands, July 6–10, pp.
1381
1388
.
46.
Kwong
,
W. Y.
,
Zhang
,
P. Y.
,
Romero
,
D.
,
Moran
,
J.
,
Morgenroth
,
M.
, and
Amon
,
C.
,
2014
, “
Multi-Objective Wind Farm Layout Optimization Considering Energy Generation and Noise Propagation With NSGA-II
,”
ASME J. Mech. Des.
,
136
(
9
), p.
091010
.
47.
Sorkhabi
,
S. Y. D.
,
Romero
,
D.
,
Yan
,
G. K.
,
Gu
,
M. D.
,
Moran
,
J.
,
Morgenroth
,
M.
, and
Amon
,
C.
,
2016
, “
The Impact of Land Use Constraints in Multi-Objective Energy-Noise Wind Farm Layout Optimization
,”
Renewable Energy
,
85
, pp.
359
370
.
48.
Gu
,
H.
, and
Wang
,
J.
,
2013
, “
Irregular-Shape Wind Farm Micro-Siting Optimization
,”
Energy
,
57
, pp.
535
544
.
49.
Song
,
M. X.
,
Chen
,
K.
,
He
,
Z. Y.
, and
Zhang
,
X.
,
2013
, “
Bionic Optimization for Micro-Siting of Wind Farm on Complex Terrain
,”
Renewable Energy
,
50
, pp.
551
557
.
50.
South Australia Environment Protection Authority Adelaide
,
2009
,
Wind Farms Environmental Noise Guidelines
,
EPA
,
Adelaide, South Australia
.
51.
ISO
,
1996
, “
Acoustics–Attenuation of Sound During Propagation Outdoors—Part 2: General Method of Calculation
,” ISO, Geneva, Switzerland, Standard No. ISO 9613-2.
52.
Standards Australia
,
2010
, “
Standards Australia, Acoustics–Measurement, Prediction and Assessment of Noise From Wind Turbine Generators
,” Standards Australia, Sydney, Sydney, NSW, Australia, Standard No. AS4959: 2010.
You do not currently have access to this content.