Abstract

In this paper, the dimensional optimization of a (2PRR)-R + 2RRR (P and R represent the prismatic and revolute joint, respectively, and the underline indicates that the joint is the actuator) kinematically redundant parallel mechanism is performed by taking the integrated error sensitivity index and workspace as the objectives. Based on the matrix method, a generalized method for error modeling of the planar three-degree-of-freedom (3-DOF) parallel mechanism is proposed. The process of the generalized error modeling method is explained, and the error model of the planar (2PRR)-R + 2RRR kinematically redundant parallel mechanism is established. Based on the proposed error model, the error sensitivity indices of different dimension types are calculated. In order to reduce the error sensitivity and expand the workspace, the elitist non-dominated sorting genetic algorithm (NSGA-II) is used for multi-objective optimization of the mechanism. The comparative analysis between the optimized and the non-optimized mechanism is carried out from three aspects: error sensitivity, distribution of low-error sensitivity area, and area of the workspace. The results show that the optimization algorithm not only expands the workspace of the mechanism but also effectively reduces the error sensitivity in the workspace.

References

1.
Tsai
,
L.
,
1999
,
Robot Analysis: The Mechanics of Serial and Parallel Manipulators
,
John Wiley & Sons
,
New York
.
2.
Zhang
,
X.
, and
Zhang
,
X.
,
2016
, “
A Comparative Study of Planar 3-RRR and 4-RRR Mechanisms With Joint Clearance
,”
Rob. Comput. Integr. Manuf.
,
40
(
C
), pp.
24
33
.
3.
Gosselin
,
C.
,
Laliberte
,
T.
, and
Veillette
,
A.
,
2017
, “
Singularity-Free Kinematically Redundant Planar Parallel Mechanisms With Unlimited Rotational Capability
,”
IEEE Trans. Rob.
,
31
(
2
), pp.
457
467
.
4.
Gosselin
,
C.
, and
Schreiber
,
L.
,
2018
, “
Redundancy in Parallel Mechanisms: A Review
,”
ASME Appl. Mech. Rev.
,
70
(
1
), p.
010802
.
5.
Guo
,
S.
, and
Qu
,
H.
,
2016
,
Structural Synthesis of Redundant Parallel Robots and Its Applications
,
Science Press
,
Beijing
.
6.
Cui
,
H.
,
Zhu
,
Z.
,
Gan
,
Z.
, and
Brogardh
,
T.
,
2005
, “
Kinematic Analysis and Error Modeling of TAU Parallel Robot
,”
Rob. Comput. Integr. Manuf.
,
21
(
6
), pp.
497
505
.
7.
Wang
,
J.
, and
Masory
,
O.
,
1993
, “
On the Accuracy of a Stewart Platform Part I: The Effect of Manufacturing Tolerances
,”
Proceedings IEEE International Conference on Robotics and Automation
,
Atlanta, GA
,
May 2–6
, pp.
114
120
.
8.
Caro
,
S.
,
Binaud
,
N.
, and
Wenger
,
P.
,
2008
, “
Sensitivity Analysis of Planar Parallel Manipulators
,”
Proceedings of the ASME 2008 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Volume 2: 32nd Mechanisms and Robotics Conference, Parts A and B
,
Brooklyn, NY
,
Aug. 3–6
, pp.
637
645
.
9.
Briot
,
S.
, and
Bonev
,
I.
,
2008
, “
Accuracy Analysis of 3-DOF Planar Parallel Robots
,”
Mech. Mach. Theory
,
43
(
4
), pp.
445
458
.
10.
Binaud
,
N.
,
Caro
,
S.
, and
Wenger
,
P.
,
2010
, “
Sensitivity Comparison of Planar Parallel Manipulators
,”
Mech. Mach. Theory
,
45
(
11
), pp.
1477
1490
.
11.
Zhan
,
Z.
,
Zhang
,
X.
,
Jian
,
Z.
, and
Zhang
,
H.
,
2018
, “
Error Modelling and Motion Reliability Analysis of a Planar Parallel Manipulator With Multiple Uncertainties
,”
Mech. Mach. Theory
,
124
, pp.
55
72
.
12.
Gallant
,
M.
, and
Gosselin
,
C.
,
2018
, “
Singularities of a Planar 3-RPR Parallel Manipulator With Joint Clearance
,”
Robotica
,
36
(
7
), pp.
1098
1109
.
13.
Zhang
,
X.
,
Zhang
,
X.
, and
Chen
,
Z.
,
2014
, “
Dynamic Analysis of a 3-RRR Parallel Mechanism With Multiple Clearance Joints
,”
Mech. Mach. Theory
,
78
, pp.
105
115
.
14.
Zhang
,
J.
,
Lian
,
B.
, and
Song
,
Y.
,
2019
, “
Geometric Error Analysis of an Over-Constrained Parallel Tracking Mechanism Using the Screw Theory
,”
Chin. J. Aeronaut.
,
32
(
6
), pp.
1541
1554
.
15.
Kotlarski
,
J.
,
Abdellatif
,
H.
, and
Heimann
,
B.
,
2008
, “
Improving the Pose Accuracy of a Planar 3RRR Parallel Manipulator Using Kinematic Redundancy and Optimized Switching Patterns
,”
2008 IEEE International Conference on Robotics and Automation
,
Pasadena, CA
,
May 19–23
, pp.
3863
3868
.
16.
Kotlarski
,
J.
,
Heimann
,
B.
, and
Ortmaier
,
T.
,
2011
, “
Experimental Validation of the Influence of Kinematic Redundancy on the Pose Accuracy of Parallel Kinematic Machines
,”
2011 IEEE International Conference on Robotics and Automation
,
Shanghai, China
,
May 9–13
, pp.
1923
1929
.
17.
Chen
,
G.
,
Wang
,
H.
,
Zhao
,
Y.
, and
Lin
,
Z.
,
2009
, “
A Kind of Kinematically Redundant Planar Parallel Manipulator for Optimal Output Accuracy
,”
Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Volume 7: 33rd Mechanisms and Robotics Conference, Parts A and B
,
San Diego, CA
,
Aug. 30–Sept. 2
, pp.
475
483
.
18.
Kim
,
H.
, and
Tsai
,
L.
,
2003
, “
Design Optimization of a Cartesian Parallel Manipulator
,”
ASME J. Mech. Des.
,
125
(
1
), pp.
43
51
.
19.
Hao
,
F.
, and
Merlet
,
J.
,
2005
, “
Multi-Criteria Optimal Design of Parallel Manipulators Based on Interval Analysis
,”
Mech. Mach. Theory
,
40
(
2
), pp.
157
171
.
20.
Zhan
,
Z.
,
Zhang
,
X.
,
Zhang
,
H.
, and
Chen
,
G.
,
2019
, “
Unified Motion Reliability Analysis and Comparison Study of Planar Parallel Manipulators With Interval Joint Clearance Variables
,”
Mech. Mach. Theory
,
138
, pp.
58
75
.
21.
Yang
,
H.
,
Fang
,
H.
,
Fang
,
Y.
, and
Li
,
X.
,
2021
, “
Dimensional Synthesis of a Novel 5-DOF Reconfigurable Hybrid Perfusion Manipulator for Large-Scale Spherical Honeycomb Perfusion
,”
Front. Mech. Eng.
,
16
, pp.
46
60
.
22.
Xu
,
W.
,
Deng
,
J.
, and
Wu
,
C.
,
1986
, “
Matrix Method for Determining the Kinematic Error of a Linkage
,”
J. Nanjing Inst. Technol.
,
3
, pp.
32
42
.
23.
Qu
,
H.
,
Guo
,
S.
, and
Zhang
,
Y.
,
2016
, “
A Novel Relative Degree-of-Freedom Criterion for a Class of Parallel Manipulators With Kinematic Redundancy and Its Applications
,”
Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci.
,
231
(
22
), pp.
4227
4240
.
24.
Caro
,
S.
,
Binaud
,
N.
, and
Wenger
,
P.
,
2009
, “
Sensitivity Analysis of 3-RPR Planar Parallel Manipulators
,”
ASME J. Mech. Des.
,
131
(
12
), p.
121005
.
25.
Bonev
,
I.
,
Zlatanov
,
D.
, and
Gosselin
,
C.
,
2003
, “
Singularity Analysis of 3-DOF Planar Parallel Mechanisms Via Screw Theory
,”
ASME J. Mech. Des.
,
125
(
3
), pp.
573
581
.
26.
Qu
,
H.
,
Hu
,
L.
, and
Guo
,
S.
,
2021
, “
Singularity Analysis and Avoidance of a Planar Parallel Mechanism With Kinematic Redundancy Under a Fixed Orientation
,”
Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci.
,
235
(
18
), pp.
3534
3553
.
27.
Qu
,
H.
, and
Guo
,
S.
,
2017
, “
Kinematics Analysis of a Novel Planar Parallel Manipulator With Kinematic Redundancy
,”
J. Mech. Sci. Technol.
,
31
(
4
), pp.
1927
1935
.
28.
Gosselin
,
C.
, and
Wang
,
J.
,
1997
, “
Singularity Loci of Planar Parallel Manipulators With Revolute Actuators
,”
Rob. Auton. Syst.
,
21
(
4
), pp.
377
398
.
29.
Li
,
G.
,
Qu
,
H.
, and
Guo
,
S.
,
2020
, “
Sensitivity Analysis of a Planar Parallel Manipulator With Kinematic Redundancy
,”
J. Mech. Eng.
,
56
(
23
), pp.
45
57
.
30.
Caro
,
S.
,
Chablat
,
D.
,
Ur-Rehman
,
R.
, and
Wenger
,
P.
,
2011
,
Multiobjective Design Optimization of 3-PRR Planar Parallel Manipulators
,
Global Product Development
,
Berlin
, pp.
373
383
.
31.
Deb
,
K.
,
Pratap
,
A.
,
Agarwal
,
S.
, and
Meyarivan
,
T.
,
2002
, “
A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II
,”
IEEE Trans. Evol. Comput.
,
6
(
2
), pp.
182
197
.
32.
Kelaiaia
,
R.
,
Company
,
O.
, and
Zaatri
,
A.
,
2012
, “
Multiobjective Optimization of Parallel Kinematic Mechanisms by the Genetic Algorithms
,”
Robotica
,
30
(
5
), pp.
783
797
.
33.
Jamwal
,
P.
,
Hussain
,
S.
, and
Xie
,
S.
,
2015
, “
Three-Stage Design Analysis and Multicriteria Optimization of a Parallel Ankle Rehabilitation Robot Using Genetic Algorithm
,”
IEEE Trans. Autom. Sci. Eng.
,
12
(
4
), pp.
1433
1446
.
34.
Cheng
,
Y.
,
Wang
,
S.
, and
Yu
,
D.
,
2019
, “
Optimal Design of a Parallel Bionic Eye Mechanism
,”
J. Mech. Sci. Technol.
,
33
(
2
), pp.
879
887
.
35.
Fang
,
H.
,
Zhu
,
T.
,
Zhang
,
H.
,
Yang
,
H.
, and
Jiang
,
B.
,
2020
, “
Design and Analysis of a Novel Hybrid Processing Robot Mechanism
,”
Int. J. Autom. Comput.
,
17
(
3
), pp.
403
416
.
You do not currently have access to this content.