Abstract

Conceptual design is the foundational stage of a design process that translates ill-defined design problems into low-fidelity design concepts and prototypes through design search, creation, and integration. In this stage, product shape design is one of the most paramount aspects. When applying deep learning-based methods to product shape design, two major challenges exist: (1) design data exhibit in multiple modalities and (2) an increasing demand for creativity. With recent advances in deep learning of cross-modal tasks (DLCMTs), which can transfer one design modality to another, we see opportunities to develop artificial intelligence (AI) to assist the design of product shapes in a new paradigm. In this paper, we conduct a systematic review of the retrieval, generation, and manipulation methods for DLCMT that involve three cross-modal types: text-to-3D shape, text-to-sketch, and sketch-to-3D shape. The review identifies 50 articles from a pool of 1341 papers in the fields of computer graphics, computer vision, and engineering design. We review (1) state-of-the-art DLCMT methods that can be applied to product shape design and (2) identify the key challenges, such as lack of consideration of engineering performance in the early design phase that need to be addressed when applying DLCMT methods. In the end, we discuss the potential solutions to these challenges and propose a list of research questions that point to future directions of data-driven conceptual design.

References

1.
Ulrich
,
K. T.
, and
Eppinger
,
S. D.
,
2016
,
Product Design and Development
, 6th ed.,
McGraw-Hill Education
,
New York
.
2.
Chakrabarti
,
A.
,
Shea
,
K.
,
Stone
,
R.
,
Cagan
,
J.
,
Campbell
,
M.
,
Hernandez
,
N. V.
, and
Wood
,
K. L.
,
2011
, “
Computer-based Design Synthesis Research: An Overview
,”
ASME J. Comput. Inf. Sci. Eng.
,
11
(
2
), p.
021003
.
3.
Regenwetter
,
L.
,
Nobari
,
A. H.
, and
Ahmed
,
F.
,
2022
, “
Deep Generative Models in Engineering Design: A Review
,”
ASME J. Mech. Des.
,
144
(
7
), p.
071704
.
4.
Liu
,
Z.
,
Lin
,
Y.
, and
Sun
,
M.
,
2020
,
Cross-Modal Representation
,
Springer
,
Singapore
.
5.
Smirnov
,
D.
,
Bessmeltsev
,
M.
, and
Solomon
,
J.
,
2021
, “
Learning Manifold Patch-Based Representations of Man-Made Shapes
,”
International Conference on Learning Representations
,
Virtual
,
May 3–7
.
6.
Guillard
,
B.
,
Remelli
,
E.
,
Yvernay
,
P.
, and
Fua
,
P.
,
2021
, “
Sketch2mesh: Reconstructing and Editing 3d Shapes From Sketches
,”
Proceedings of the IEEE/CVF International Conference on Computer Vision
,
Virtual
,
Oct. 11–17
, pp.
13023
13032
.
7.
Otto
,
K. N.
, and
Wood
,
K.
,
2001
,
Product Design: Techniques in Reverse Engineering and New Product Development
,
Prentice Hall
,
Upper Saddle River, NJ
.
8.
Yang
,
M. C.
,
2009
, “
Observations on Concept Generation and Sketching in Engineering Design
,”
Res. Eng. Des.
,
20
(
1
), pp.
1
11
.
9.
Hyun
,
K. H.
, and
Lee
,
J.-H.
,
2018
, “
Balancing Homogeneity and Heterogeneity in Design Exploration by Synthesizing Novel Design Alternatives Based on Genetic Algorithm and Strategic Styling Decision
,”
Adv. Eng. Inform.
,
38
, pp.
113
128
.
10.
Mountstephens
,
J.
, and
Teo
,
J.
,
2020
, “
Progress and Challenges in Generative Product Design: A Review of Systems
,”
Computers
,
9
(
4
), p.
80
.
11.
Ahmed
,
F.
,
Ramachandran
,
S. K.
,
Fuge
,
M. D.
,
Hunter
,
S. T.
, and
Miller
,
S. R.
,
2018
, “
Interpreting Idea Maps: Pairwise Comparisons Reveal What Makes Ideas Novel
,”
ASME J. Mech. Des.
,
141
(
2
), p.
021102
.
12.
Krish
,
S.
,
2011
, “
A Practical Generative Design Method
,”
Comput. Aided Des.
,
43
(
1
), pp.
88
100
.
13.
Pratt
,
M. J.
,
Anderson
,
B. D.
, and
Ranger
,
T.
,
2005
, “
Towards the Standardized Exchange of Parameterized Feature-Based CAD Models
,”
Comput. Aided Des.
,
37
(
12
), pp.
1251
1265
.
14.
Menezes
,
A.
, and
Lawson
,
B.
,
2006
, “
How Designers Perceive Sketches
,”
Des. Stud.
,
27
(
5
), pp.
571
585
.
15.
Xu
,
P.
,
Hospedales
,
T. M.
,
Yin
,
Q.
,
Song
,
Y.-Z.
,
Xiang
,
T.
, and
Wang
,
L.
,
2023
, “
Deep Learning for Free-Hand Sketch: A Survey
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
45
(
1
), pp.
285
312
.
16.
Ha
,
D.
, and
Eck
,
D.
,
2018
, “
A Neural Representation of Sketch Drawings
,”
International Conference on Learning Representations.
,
Vancouver Convention Center, Vancouver, BC, Canada
,
Apr. 30–May 3
.
17.
Chen
,
K.
,
Choy
,
C. B.
,
Savva
,
M.
,
Chang
,
A. X.
,
Funkhouser
,
T.
, and
Savarese
,
S.
,
2018
, “
Text2shape: Generating Shapes From Natural Language by Learning Joint Embeddings
,”
Asian Conference on Computer Vision
,
Perth, Australia
,
Dec. 2–6
, pp.
100
116
.
18.
Fukamizu
,
K.
,
Kondo
,
M.
, and
Sakamoto
,
R.
,
2019
, “
Generation High Resolution 3d Model From Natural Language by Generative Adversarial Network
,” Preprint arXiv:1901.07165.
19.
Nozawa
,
N.
,
Shum
,
H. P.
,
Ho
,
E. S.
, and
Morishima
,
S.
,
2020
, “
Single Sketch Image Based 3d Car Shape Reconstruction With Deep Learning and Lazy Learning
,”
International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications
,
Valletta, Malta
,
Feb. 27–29
, pp.
179
190
.
20.
Nozawa
,
N.
,
Shum
,
H. P.
,
Feng
,
Q.
,
Ho
,
E. S.
, and
Morishima
,
S.
,
2022
, “
3d Car Shape Reconstruction From a Contour Sketch Using GAN and Lazy Learning
,”
Vis. Comput.
,
38
(
4
), pp.
1317
1330
.
21.
Wendrich
,
R. E.
,
2018
, “
Multiple Modalities, Sensoriums, Experiences in Blended Spaces With Toolness and Tools for Conceptual Design Engineering
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Vol. 51739
,
Quebec City, Canada
,
Aug. 26–29
,
p. V01BT02A046
.
22.
Song
,
B.
,
Miller
,
S.
, and
Ahmed
,
F.
,
2022
, “
Hey, Ai! Can You See What I See? Multimodal Transfer Learning-Based Design Metrics Prediction for Sketches With Text Descriptionss
,”
ASME 2022 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
St. Louis, MO
,
Aug. 14–17
,
p. V006T06A017
.
23.
Song
,
B.
,
Zurita
,
N. S.
,
Zhang
,
G.
,
Stump
,
G.
,
Balon
,
C.
,
Miller
,
S.
,
Yukish
,
M.
,
Cagan
,
J.
, and
McComb
,
C.
,
2020
, “
Toward Hybrid Teams: A Platform to Understand Human–Computer Collaboration During the Design of Complex Engineered Systems
,”
Proceedings of the Design Society: DESIGN Conference
,
Virtual
,
Oct. 26–29
, pp.
1551
1560
.
24.
Li
,
X.
,
Wang
,
Y.
, and
Sha
,
Z.
,
2022
, “
Deep Learning of Cross-Modal Tasks for Conceptual Design of Engineered Products: A Review
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
St. Louis, MO
,
Aug. 14–17
,
p. V006T06A016
.
25.
Chen
,
W.
,
Chiu
,
K.
, and
Fuge
,
M. D.
,
2020
, “
Airfoil Design Parameterization and Optimization Using Bézier Generative Adversarial Networks
,”
AIAA J.
,
58
(
11
), pp.
4723
4735
.
26.
Oh
,
S.
,
Jung
,
Y.
,
Kim
,
S.
,
Lee
,
I.
, and
Kang
,
N.
,
2019
, “
Deep Generative Design: Integration of Topology Optimization and Generative Models
,”
ASME J. Mech. Des.
,
141
(
11
), p.
111405
.
27.
Dering
,
M.
,
Cunningham
,
J.
,
Desai
,
R.
,
Yukish
,
M. A.
,
Simpson
,
T. W.
, and
Tucker
,
C. S.
,
2018
, “
A Physics-Based Virtual Environment for Enhancing the Quality of Deep Generative Designs
,”
ASME 2018 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Quebec City, Quebec, Canada
,
Aug. 26–29
,
p. V02AT03A015
.
28.
Shu
,
D.
,
Cunningham
,
J.
,
Stump
,
G.
,
Miller
,
S. W.
,
Yukish
,
M. A.
,
Simpson
,
T. W.
, and
Tucker
,
C. S.
,
2020
, “
3D Design Using Generative Adversarial Networks and Physics-Based Validation
,”
ASME J. Mech. Des.
,
142
(
7
), p.
071701
.
29.
Zhang
,
W.
,
Yang
,
Z.
,
Jiang
,
H.
,
Nigam
,
S.
,
Yamakawa
,
S.
,
Furuhata
,
T.
,
Shimada
,
K.
, and
Kara
,
L. B.
,
2019
, “
3d Shape Synthesis for Conceptual Design and Optimization Using Variational Autoencoders
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Anaheim, CA
,
Aug. 18–21
,
p. V02AT03A017
.
30.
Li
,
X.
,
Xie
,
C.
, and
Sha
,
Z.
,
2021
, “
Part-Aware Product Design Agent Using Deep Generative Network and Local Linear Embedding
,”
Proceedings of the 54th Hawaii International Conference on System Sciences
,
Virtual
,
Jan. 5–8
,
p. 5250
.
31.
Brock
,
A.
,
Lim
,
T.
,
Ritchie
,
J. M.
, and
Weston
,
N.
,
2016
, “
Context-Aware Content Generation for Virtual Environments
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Charlotte, NC
,
Aug. 21–24
,
p. V01BT02A045
.
32.
Qin
,
F.
,
Qiu
,
S.
,
Gao
,
S.
, and
Bai
,
J.
,
2022
, “
3d CAD Model Retrieval Based on Sketch and Unsupervised Variational Autoencoder
,”
Adv. Eng. Inform.
,
51
, p.
101427
.
33.
Li
,
X.
,
Xie
,
C.
, and
Sha
,
Z.
,
2022
, “
A Predictive and Generative Design Approach for Three-Dimensional Mesh Shapes Using Target-Embedding Variational Autoencoder
,”
ASME J. Mech. Des.
,
144
(
11
), p.
114501
.
34.
Qi
,
A.
,
Gryaditskaya
,
Y.
,
Song
,
J.
,
Yang
,
Y.
,
Qi
,
Y.
,
Hospedales
,
T. M.
,
Xiang
,
T.
, and
Song
,
Y.-Z.
,
2021
, “
Toward Fine-Grained Sketch-Based 3d Shape Retrieval
,”
IEEE Trans. Image Process.
,
30
, pp.
8595
8606
.
35.
Lun
,
Z.
,
Gadelha
,
M.
,
Kalogerakis
,
E.
,
Maji
,
S.
, and
Wang
,
R.
,
2017
, “
3d Shape Reconstruction From Sketches Via Multi-View Convolutional Networks
,”
2017 International Conference on 3D Vision (3DV)
,
Qingdao, China
,
Oct. 10–12
, pp.
67
77
.
36.
Michel
,
O.
,
Bar-On
,
R.
,
Liu
,
R.
,
Benaim
,
S.
, and
Hanocka
,
R.
,
2022
, “
Text2mesh: Text-Driven Neural Stylization for Meshes
,”
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
,
New Orleans, LA
,
June 21–24
, pp.
13492
13502
.
37.
Elgammal
,
A.
,
Liu
,
B.
,
Elhoseiny
,
M.
, and
Mazzone
,
M.
,
2017
, “
Art’ by Learning About Styles and Deviating From Style Norms
,”
Proceedings of the 8th International Conference on Computational Creativity
,
Atlanta, GA
,
June 19–23
.
38.
Chen
,
W.
, and
Ahmed
,
F.
,
2021
, “
PaDGAN: Learning to Generate High-Quality Novel Designs
,”
ASME J. Mech. Des.
,
143
(
3
), p.
031703
.
39.
Burnap
,
A.
,
Liu
,
Y.
,
Pan
,
Y.
,
Lee
,
H.
,
Gonzalez
,
R.
, and
Papalambros
,
P. Y.
,
2016
, “
Estimating and Exploring the Product Form Design Space Using Deep Generative Models
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Charlotte, NC
,
Aug. 21–24
,
p. V02AT03A013
.
40.
Judd
,
G.
, and
Steenkiste
,
P.
,
2003
, “
Providing Contextual Information to Pervasive Computing Applications
,”
Proceedings of the First IEEE International Conference on Pervasive Computing and Communications
,
Fort Worth, TX
,
Mar. 23–26
, pp.
133
142
.
41.
Valdez
,
S.
,
Seepersad
,
C.
, and
Kambampati
,
S.
,
2021
, “
A Framework for Interactive Structural Design Exploration
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Virtual
,
Aug. 17–19
,
p. V03BT03A006
.
42.
Starly
,
B.
,
Angrish
,
A.
, and
Cohen
,
P.
,
2019
, “
Research Directions in Democratizing Innovation Through Design Automation, One-Click Manufacturing Services and Intelligent Machines
,” Preprint arXiv:1909.10476.
43.
Sanghi
,
A.
,
Chu
,
H.
,
Lambourne
,
J. G.
,
Wang
,
Y.
,
Cheng
,
C.-Y.
,
Fumero
,
M.
, and
Malekshan
,
K. R.
,
2022
, “
Clip-Forge: Towards Zero-Shot Text-to-Shape Generation
,”
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
,
New Orleans, LA
,
June 21–24
, pp.
18603
18613
.
44.
Giunchi
,
D.
,
Sztrajman
,
A.
,
James
,
S.
, and
Steed
,
A.
,
2021
, “
Mixing Modalities of 3D Sketching and Speech for Interactive Model Retrieval in Virtual Reality
,”
ACM International Conference on Interactive Media Experiences
,
Virtual
,
June 21–23
, pp.
144
155
.
45.
Khan
,
K. S.
,
Kunz
,
R.
,
Kleijnen
,
J.
, and
Antes
,
G.
,
2003
, “
Five Steps to Conducting a Systematic Review
,”
J. Royal Soc. Med.
,
96
(
3
), pp.
118
121
.
46.
Kingma
,
D. P.
, and
Welling
,
M.
,
2014
, “
Auto-Encoding Variational Bayes
,”
International Conference on Learning Representation
,
Banff, Canada
,
Apr. 14–16
.
47.
Goodfellow
,
I.
,
Pouget-Abadie
,
J.
,
Mirza
,
M.
,
Xu
,
B.
,
Warde-Farley
,
D.
,
Ozair
,
S.
,
Courville
,
A.
, and
Bengio
,
Y.
,
2014
, “
Generative Adversarial Nets
,”
Conference on Neural Information Processing Systems
,
Montreal, Canada
,
Dec. 8–13
, pp.
2672
2680
.
48.
Wang
,
F.
,
Kang
,
L.
, and
Li
,
Y.
,
2015
, “
Sketch-Based 3D Shape Retrieval Using Convolutional Neural Networks
,”
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
,
Boston, MA
,
June 8–10
, pp.
1875
1883
.
49.
Chang
,
A. X.
,
Funkhouser
,
T.
,
Guibas
,
L.
,
Hanrahan
,
P.
,
Huang
,
Q.
,
Li
,
Z.
,
Savarese
,
S.
,
Savva
,
M.
,
Song
,
S.
, and
Su
,
H.
,
2015
, “
Shapenet: An Information-Rich 3D Model Repository
,” Preprint arXiv:1512.03012.
50.
Liu
,
Z.
,
Wang
,
Y.
,
Qi
,
X.
, and
Fu
,
C.-W.
,
2022
, “
Towards Implicit Text-Guided 3D Shape Generation
,”
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
,
New Orleans, LA
,
June 21–24
, pp.
17896
17906
.
51.
Jin
,
A.
,
Fu
,
Q.
, and
Deng
,
Z.
,
2020
, “
Contour-Based 3D Modeling Through Joint Embedding of Shapes and Contours
,”
Symposium on Interactive 3D Graphics and Games
,
Virtual
,
Sept. 14–18
, pp.
1
10
.
52.
Radford
,
A.
,
Kim
,
J. W.
,
Hallacy
,
C.
,
Ramesh
,
A.
,
Goh
,
G.
,
Agarwal
,
S.
,
Sastry
,
G.
,
Askell
,
A.
,
Mishkin
,
P.
,
Clark
,
J.
, and
Krueger
,
G.
,
2021
, “
Learning Transferable Visual Models From Natural Language Supervision
,”
International Conference on Machine Learning
,
Virtual
,
July 18–24
, pp.
8748
8763
.
53.
Huang
,
F.
, and
Canny
,
J. F.
,
2019
, “
Sketchforme: Composing Sketched Scenes From Text Descriptions for Interactive Applications
,”
Proceedings of the 32nd Annual ACM Symposium on User Interface Software and Technology
,
New Orleans, LA
,
Oct. 20–23
, pp.
209
220
.
54.
Huang
,
F.
,
Schoop
,
E.
,
Ha
,
D.
, and
Canny
,
J.
,
2020
, “
Scones: Towards Conversational Authoring of Sketches
,”
Proceedings of the 25th International Conference on Intelligent User Interfaces
,
Cagliari, Italy
,
Mar. 17–20
, pp.
313
323
.
55.
Li
,
B.
,
Yuan
,
J.
,
Ye
,
Y.
,
Lu
,
Y.
,
Zhang
,
C.
, and
Tian
,
Q.
,
2021
, “
3D Sketching for 3D Object Retrieval
,”
Multimedia Tools Appl.
,
80
(
6
), pp.
9569
9595
.
56.
Li
,
C.
,
Pan
,
H.
,
Liu
,
Y.
,
Tong
,
X.
,
Sheffer
,
A.
, and
Wang
,
W.
,
2018
, “
Robust Flow-Guided Neural Prediction for Sketch-Based Freeform Surface Modeling
,”
ACM Trans. Graph.
,
37
(
6
), pp.
1
12
.
57.
Delanoy
,
J.
,
Aubry
,
M.
,
Isola
,
P.
,
Efros
,
A. A.
, and
Bousseau
,
A.
,
2018
, “
3D Sketching Using Multi-view Deep Volumetric Prediction
,”
Proc. ACM Comput. Graph. Interact. Tech.
,
1
(
1
), pp.
1
22
.
58.
Han
,
X.
,
Gao
,
C.
, and
Yu
,
Y.
,
2017
, “
Deepsketch2face: A Deep Learning Based Sketching System for 3D Face and Caricature Modeling
,”
ACM Trans. Graph.
,
36
(
4
), pp.
1
12
.
59.
Du
,
D.
,
Zhu
,
H.
,
Nie
,
Y.
,
Han
,
X.
,
Cui
,
S.
,
Yu
,
Y.
, and
Liu
,
L.
,
2021
, “
Learning Part Generation and Assembly for Sketching Man-Made Objects
,”
Comput. Graph. Forum
,
40
(
1
), pp.
222
233
.
60.
Luo
,
Z.
,
Zhou
,
J.
,
Zhu
,
H.
,
Du
,
D.
,
Han
,
X.
, and
Fu
,
H.
,
2021
, “
Simpmodeling: Sketching Implicit Field to Guide Mesh Modeling for 3D Animalmorphic Head Design
,”
The 34th Annual ACM Symposium on User Interface Software and Technology
,
Virtual
,
Oct. 10–14
, pp.
854
863
.
61.
Wang
,
C.
,
Chai
,
M.
,
He
,
M.
,
Chen
,
D.
, and
Liao
,
J.
,
2022
, “
Clip-nerf: Text-and-Image Driven Manipulation of Neural Radiance Fields
,”
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
,
New Orleans, LA
,
June 21–24
, pp.
3835
3844
.
62.
Stemasov
,
E.
,
Wagner
,
T.
,
Gugenheimer
,
J.
, and
Rukzio
,
E.
,
2022
, “
Shapefindar: Exploring In-Situ Spatial Search for Physical Artifact Retrieval Using Mixed Reality
,”
CHI Conference on Human Factors in Computing Systems
,
New Orleans, LA
,
Apr. 30–May 5
, pp.
1
12
.
63.
Yuan
,
S.
,
Dai
,
A.
,
Yan
,
Z.
,
Guo
,
Z.
,
Liu
,
R.
, and
Chen
,
M.
,
2021
, “
Sketchbird: Learning to Generate Bird Sketches From Text
,”
Proceedings of the IEEE/CVF International Conference on Computer Vision
,
Virtual
,
Oct. 11–17
, pp.
2443
2452
.
64.
Min
,
P.
,
Kazhdan
,
M.
, and
Funkhouser
,
T.
,
2004
, “
A Comparison of Text and Shape Matching for Retrieval of Online 3D Models
,”
International Conference on Theory and Practice of Digital Libraries
,
Bath, UK
,
Sept. 12–17
, pp.
209
220
.
65.
Haeusser
,
P.
,
Mordvintsev
,
A.
, and
Cremers
,
D.
,
2017
, “
Learning by Association-A Versatile Semi-Supervised Training Method for Neural Networks
,”
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
,
Honolulu, HI
,
July 22–25
, pp.
89
98
.
66.
Han
,
Z.
,
Shang
,
M.
,
Wang
,
X.
,
Liu
,
Y.-S.
, and
Zwicker
,
M.
,
2019
, “
Y2seq2seq: Cross-Modal Representation Learning for 3D Shape and Text by Joint Reconstruction and Prediction of View and Word Sequences
,”
Proceedings of the AAAI Conference on Artificial Intelligence
,
Honolulu, HI
,
Jan. 27–Feb. 1
, pp.
126
133
.
67.
Shilane
,
P.
,
Min
,
P.
,
Kazhdan
,
M.
, and
Funkhouser
,
T.
,
2004
, “
The Princeton Shape Benchmark
,”
Proceedings Shape Modeling Applications, 2004
,
Genova, Italy
,
June 7–9
, pp.
167
178
.
68.
Li
,
B.
,
Lu
,
Y.
,
Godil
,
A.
,
Schreck
,
T.
,
Bustos
,
B.
,
Ferreira
,
A.
,
Furuya
,
T.
,
Fonseca
,
M. J.
,
Johan
,
H.
,
Matsuda
,
T.
, and
Ohbuchi
,
R.
,
2014
, “
A Comparison of Methods for Sketch-Based 3D Shape Retrieval
,”
Comput. Vis. Image Understand.
,
119
, pp.
57
80
.
69.
Chopra
,
S.
,
Hadsell
,
R.
, and
LeCun
,
Y.
,
2005
, “
Learning a Similarity Metric Discriminatively, With Application to Face Verification
,”
IEEE Computer Society Conference on Computer Vision and Pattern Recognition
,
San Diego, CA
,
June 20–26
, pp.
539
546
.
70.
Zhu
,
F.
,
Xie
,
J.
, and
Fang
,
Y.
,
2016
, “
Learning Cross-Domain Neural Networks for Sketch-Based 3D Shape Retrieval
,”
Proceedings of the AAAI Conference on Artificial Intelligence
,
Phoenix, AZ
,
Feb. 12–17
, pp.
3683
3689
.
71.
Dai
,
G.
,
Xie
,
J.
, and
Fang
,
Y.
,
2018
, “
Deep Correlated Holistic Metric Learning for Sketch-Based 3D Shape Retrieval
,”
IEEE Trans. Image Process.
,
27
(
7
), pp.
3374
3386
.
72.
Dai
,
G.
,
Xie
,
J.
,
Zhu
,
F.
, and
Fang
,
Y.
,
2017
, “
Deep Correlated Metric Learning for Sketch-Based 3D Shape Retrieval
,”
Thirty-First AAAI Conference on Artificial Intelligence.
,
San Francisco, CA
,
Feb. 4–9
, pp.
4002
4008
.
73.
Chen
,
J.
, and
Fang
,
Y.
,
2018
, “
Deep Cross-Modality Adaptation Via Semantics Preserving Adversarial Learning for Sketch-Based 3D Shape Retrieval
,”
Proceedings of the European Conference on Computer Vision (ECCV)
,
Munich, Germany
,
Sept. 8–14
, pp.
605
620
.
74.
Xia
,
Y.
,
Wang
,
S.
,
You
,
L.
, and
Zhang
,
J.
,
2021
, “
Semantic Similarity Metric Learning for Sketch-Based 3D Shape Retrieval
,”
International Conference on Computational Science
,
Krakow, Poland
,
June 16–18
, pp.
59
69
.
75.
Yang
,
H.
,
Tian
,
Y.
,
Yang
,
C.
,
Wang
,
Z.
,
Wang
,
L.
, and
Li
,
H.
,
2022
, “
Sequential Learning for Sketch-Based 3D Model Retrieval
,”
Multimedia Syst.
,
28
(
3
), pp.
761
778
.
76.
Kaya
,
M.
, and
Bilge
,
H. Ş.
,
2019
, “
Deep Metric Learning: A Survey
,”
Symmetry
,
11
(
9
), p.
1066
.
77.
Xie
,
J.
,
Dai
,
G.
,
Zhu
,
F.
, and
Fang
,
Y.
,
2017
, “
Learning Barycentric Representations of 3D Shapes for Sketch-Based 3D Shape Retrieval
,”
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
,
Honolulu, HI
,
July 21–26
, pp.
5068
5076
.
78.
Chen
,
J.
,
Qin
,
J.
,
Liu
,
L.
,
Zhu
,
F.
,
Shen
,
F.
,
Xie
,
J.
, and
Shao
,
L.
,
2019
, “
Deep Sketch-Shape Hashing With Segmented 3D Stochastic Viewing
,”
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
,
Long Beach, CA
,
June 16–20
, pp.
791
800
.
79.
Niu
,
Z.
,
Zhong
,
G.
, and
Yu
,
H.
,
2021
, “
A Review on the Attention Mechanism of Deep Learning
,”
Neurocomputing
,
452
, pp.
48
62
.
80.
Liang
,
S.
,
Dai
,
W.
, and
Wei
,
Y.
,
2021
, “
Uncertainty Learning for Noise Resistant Sketch-Based 3D Shape Retrieval
,”
IEEE Trans. Image Process.
,
30
, pp.
8632
8643
.
81.
Liu
,
Q.
, and
Zhao
,
S.
,
2021
, “
Guidance Cleaning Network for Sketch-Based 3D Shape Retrieval
,”
J. Phys.: Conf. Ser.
,
1961
(
1
), p.
012072
.
82.
Li
,
B.
,
Lu
,
Y.
,
Godil
,
A.
,
Schreck
,
T.
,
Aono
,
M.
,
Johan
,
H.
,
Saavedra
,
J. M.
, and
Tashiro
,
S.
,
2013
, “
SHREC’13 Track: Large Scale Sketch-Based 3D Shape Retrieval
,”
Proceedings of the Sixth Eurographics Workshop on 3D Object Retrieval
,
Girona, Spain
,
May 11
, pp.
89
96
.
83.
Li
,
B.
,
Lu
,
Y.
,
Li
,
C.
,
Godil
,
A.
,
Schreck
,
T.
,
Aono
,
M.
,
Burtscher
,
M.
,
Fu
,
H.
,
Furuya
,
T.
,
Johan
,
H.
, and
Liu
,
J.
,
2014
, “
Shrec’14 Track: Extended Large Scale Sketch-Based 3D Shape Retrieval
,”
Eurographics Workshop on 3D Object Retrieval
,
Strasbourg, France
,
Apr. 6
, pp.
121
130
.
84.
Su
,
H.
,
Maji
,
S.
,
Kalogerakis
,
E.
, and
Learned-Miller
,
E.
,
2015
, “
Multi-View Convolutional Neural Networks for 3D Shape Recognition
,”
Proceedings of the IEEE International Conference on Computer Vision
,
Santiago, Chile
,
Dec. 7–13
, pp.
945
953
.
85.
Navarro
,
P.
,
Orlando
,
J. I.
,
Delrieux
,
C.
, and
Iarussi
,
E.
,
2021
, “
Sketchzooms: Deep Multi-View Descriptors for Matching Line Drawings
,”
Comput. Graph. Forum
,
40
(
1
), pp.
410
423
.
86.
Manda
,
B.
,
Dhayarkar
,
S.
,
Mitheran
,
S.
,
Viekash
,
V.
, and
Muthuganapathy
,
R.
,
2021
, “
‘Cadsketchnet’—An Annotated Sketch Dataset for 3D CAD Model Retrieval With Deep Neural Networks
,”
Comput. Graph.
,
99
, pp.
100
113
.
87.
Jayanti
,
S.
,
Kalyanaraman
,
Y.
,
Iyer
,
N.
, and
Ramani
,
K.
,
2006
, “
Developing an Engineering Shape Benchmark for CAD Models
,”
Comput. Aided Des.
,
38
(
9
), pp.
939
953
.
88.
Kim
,
S.
,
Chi
,
H.-G.
,
Hu
,
X.
,
Huang
,
Q.
, and
Ramani
,
K.
,
2020
, “
A Large-Scale Annotated Mechanical Components Benchmark for Classification and Retrieval Tasks With Deep Neural Networks
,”
European Conference on Computer Vision
,
Virtual
,
Aug. 23–28
, pp.
175
191
.
89.
Ye
,
Y.
,
Li
,
B.
, and
Lu
,
Y.
,
2016
, “
3D Sketch-Based 3D Model Retrieval With Convolutional Neural Network
,”
International Conference on Pattern Recognition
,
Cancun, Mexico
,
Dec. 4–8
, pp.
2936
2941
.
90.
Yang
,
Y.
, and
Hospedales
,
T. M.
,
2015
, “
Deep Neural Networks for Sketch Recognition
,” Preprint arXiv:1501.07873, 1(2), p.
3
.
91.
Li
,
B.
,
Lu
,
Y.
,
Duan
,
F.
,
Dong
,
S.
,
Fan
,
Y.
,
Qian
,
L.
,
Laga
,
H.
,
Li
,
H.
,
Li
,
Y.
,
Lui
,
P.
, and
Ovsjanikov
,
M.
,
2016
, “
Shrec’16 Track: 3D Sketch-Based 3D Shape Retrieval
,”
Proceedings of the Eurographics 2016 Workshop on 3D Object Retrieval
,
Lisbon, Portugal
,
May 8
, pp.
47
54
.
92.
Giunchi
,
D.
,
James
,
S.
, and
Steed
,
A.
,
2018
, “
3D Sketching for Interactive Model Retrieval in Virtual Reality
,”
Proceedings of the Joint Symposium on Computational Aesthetics and Sketch-Based Interfaces and Modeling and Non-Photorealistic Animation and Rendering
,
Victoria, Canada
,
Aug. 17–19
, pp.
1
12
.
93.
Jahan
,
T.
,
Guan
,
Y.
, and
van Kaick
,
O.
,
2021
, “
Semantics-Guided Latent Space Exploration for Shape Generation
,”
Comput. Graph. Forum
,
40
(
2
), pp.
115
126
.
94.
Wang
,
Y.
,
Asafi
,
S.
,
Van Kaick
,
O.
,
Zhang
,
H.
,
Cohen-Or
,
D.
, and
Chen
,
B.
,
2012
, “
Active Co-analysis of a Set of Shapes
,”
ACM Trans. Graph.
,
31
(
6
), pp.
1
10
.
95.
Wu
,
Z.
,
Song
,
S.
,
Khosla
,
A.
,
Yu
,
F.
,
Zhang
,
L.
,
Tang
,
X.
, and
Xiao
,
J.
,
2015
, “
3d Shapenets: A Deep Representation for Volumetric Shapes
,”
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
,
Boston, MA
,
June 7–12
, pp.
1912
1920
.
96.
Arjovsky
,
M.
,
Chintala
,
S.
, and
Bottou
,
L.
,
2017
, “
Wasserstein Generative Adversarial Networks
,”
International Conference on Machine Learning
,
Sydney, Australia
,
Aug. 6–11
, pp.
214
223
.
97.
Li
,
B.
,
Yu
,
Y.
, and
Li
,
Y.
,
2020
, “
Lbwgan: Label Based Shape Synthesis From Text With WGANS
,”
2020 International Conference on Virtual Reality and Visualization (ICVRV)
,
Recife, Brazil
,
Nov. 13–14
, pp.
47
52
.
98.
Mescheder
,
L.
,
Oechsle
,
M.
,
Niemeyer
,
M.
,
Nowozin
,
S.
, and
Geiger
,
A.
,
2019
, “
Occupancy Networks: Learning 3D Reconstruction in Function Space
,”
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
,
Long Beach, CA
,
June 16–20
, pp.
4460
4470
.
99.
Vaswani
,
A.
,
Shazeer
,
N.
,
Parmar
,
N.
,
Uszkoreit
,
J.
,
Jones
,
L.
,
Gomez
,
A. N.
,
Kaiser
,
Ł.
, and
Polosukhin
,
I.
,
2017
, “
Attention Is All You Need
,”
Conference on Neural Information Processing Systems
,
Long Beach, CA
,
Dec. 4–9
, pp.
5998
6008
.
100.
Xian
,
Y.
,
Lampert
,
C. H.
,
Schiele
,
B.
, and
Akata
,
Z.
,
2018
, “
Zero-Shot Learning—A Comprehensive Evaluation of the Good, the Bad and the Ugly
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
41
(
9
), pp.
2251
2265
.
101.
Dinh
,
L.
,
Sohl-Dickstein
,
J.
, and
Bengio
,
S.
,
2017
, “
Density Estimation Using Real NVP
,”
International Conference on Learning Representations
,
Toulon, France
,
Apr. 24–26
.
102.
Jain
,
A.
,
Mildenhall
,
B.
,
Barron
,
J. T.
,
Abbeel
,
P.
, and
Poole
,
B.
,
2022
, “
Zero-Shot Text-Guided Object Generation With Dream Fields
,”
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
,
New Orleans, LA
,
June 21–24
, pp.
867
876
.
103.
Mildenhall
,
B.
,
Srinivasan
,
P. P.
,
Tancik
,
M.
,
Barron
,
J. T.
,
Ramamoorthi
,
R.
, and
Ng
,
R.
,
2020
, “
Nerf: Representing Scenes as Neural Radiance Fields for View Synthesis
,”
European Conference on Computer Vision
,
Virtual
,
Aug. 23–28
, pp.
405
421
.
104.
Frolov
,
S.
,
Hinz
,
T.
,
Raue
,
F.
,
Hees
,
J.
, and
Dengel
,
A.
,
2021
, “
Adversarial Text-to-Image Synthesis: A Review
,”
Neural Netw.
,
144
, pp.
187
209
.
105.
Wang
,
Y.
,
Chang
,
L.
,
Cheng
,
Y.
,
Jin
,
L.
,
Cheng
,
Z.
,
Deng
,
X.
, and
Duan
,
F.
,
2018
, “
Text2sketch: Learning Face Sketch From Facial Attribute Text
,”
2018 25th IEEE International Conference on Image Processing (ICIP)
,
Athens, Greece
,
Oct. 7–10
, pp.
669
673
.
106.
Wah
,
C.
,
Branson
,
S.
,
Welinder
,
P.
,
Perona
,
P.
, and
Belongie
,
S.
,
2010
, “
Caltech-UCSD Birds 200
,”
California Institute of Technology. CNS-TR-2010-001
.
107.
Krishna
,
R.
,
Zhu
,
Y.
,
Groth
,
O.
,
Johnson
,
J.
,
Hata
,
K.
,
Kravitz
,
J.
,
Chen
,
S.
,
Kalantidis
,
Y.
,
Li
,
L.-J.
,
Shamma
,
D. A.
,
Bernstein
,
M. S.
, and
Fei-Fei
,
L.
,
2017
, “
Visual Genome: Connecting Language and Vision Using Crowdsourced Dense Image Annotations
,”
Int. J. Comput. Vis.
,
123
(
1
), pp.
32
73
.
108.
Jongejan
,
J.
,
Rowley
,
H.
,
Kawashima
,
T.
,
Kim
,
J.
, and
Fox-Gieg
,
N.
,
2016
, “
The Quick, Draw!-AI Experiment
,”
Mount View, CA
, p.
4
, Accessed February 17, 2018.
109.
Olsen
,
L.
,
Samavati
,
F. F.
,
Sousa
,
M. C.
, and
Jorge
,
J. A.
,
2009
, “
Sketch-Based Modeling: A Survey
,”
Comput. Graph.
,
33
(
1
), pp.
85
103
.
110.
Nishida
,
G.
,
Garcia-Dorado
,
I.
,
Aliaga
,
D. G.
,
Benes
,
B.
, and
Bousseau
,
A.
,
2016
, “
Interactive Sketching of Urban Procedural Models
,”
ACM Trans. Graph.
,
35
(
4
), pp.
1
11
.
111.
He
,
Y.
,
Xie
,
H.
,
Zhang
,
C.
,
Yang
,
X.
, and
Miyata
,
K.
,
2021
, “
Sketch-Based Normal Map Generation With Geometric Sampling
,”
International Workshop on Advanced Imaging Technology (IWAIT)
,
Virtual
,
Jan. 5–6
, pp.
261
266
.
112.
Su
,
W.
,
Du
,
D.
,
Yang
,
X.
,
Zhou
,
S.
, and
Fu
,
H.
,
2018
, “
Interactive Sketch-Based Normal Map Generation With Deep Neural Networks
,”
Proc. ACM Comput. Graph. Interact. Tech.
,
1
(
1
), pp.
1
17
.
113.
Aha
,
D. W.
,
2013
,
Lazy Learning
, 1st ed.,
Springer Science & Business Media
,
Dordrecht, Netherlands
.
114.
Delanoy
,
J.
,
Coeurjolly
,
D.
,
Lachaud
,
J.-O.
, and
Bousseau
,
A.
,
2019
, “
Combining Voxel and Normal Predictions for Multi-view 3d Sketching
,”
Comput. Graph.
,
82
, pp.
65
72
.
115.
Yang
,
K.
,
Lu
,
J.
,
Hu
,
S.
, and
Chen
,
X.
,
2021
, “
Deep 3D Modeling of Human Bodies From Freehand Sketching
,”
International Conference on Multimedia Modeling
,
Phu Quoc, Vietnam
,
June 6–10
, pp.
36
48
.
116.
Pavlakos
,
G.
,
Choutas
,
V.
,
Ghorbani
,
N.
,
Bolkart
,
T.
,
Osman
,
A. A.
,
Tzionas
,
D.
, and
Black
,
M. J.
,
2019
, “
Expressive Body Capture: 3D Hands, Face, and Body From a Single Image
,”
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
,
Long Beach, CA
,
June 16–20
, pp.
10975
10985
.
117.
Cao
,
C.
,
Weng
,
Y.
,
Zhou
,
S.
,
Tong
,
Y.
, and
Zhou
,
K.
,
2013
, “
Facewarehouse: A 3D Facial Expression Database for Visual Computing
,”
IEEE Trans. Vis. Comput. Graph.
,
20
(
3
), pp.
413
425
.
118.
Wang
,
F.
,
Yang
,
Y.
,
Zhao
,
B.
,
Jiang
,
D.
,
Chen
,
S.
, and
Sheng
,
J.
,
2021
, “
Reconstructing 3D Model From Single-View Sketch With Deep Neural Network
,”
Wireless Commun. Mobile Comput.
,
2021
. .
Article ID 5577530
.
119.
Park
,
J. J.
,
Florence
,
P.
,
Straub
,
J.
,
Newcombe
,
R.
, and
Lovegrove
,
S.
,
2019
, “
Deepsdf: Learning Continuous Signed Distance Functions for Shape Representation
,”
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
,
Long Beach, CA
,
June 16–20
, pp.
165
174
.
120.
Zhang
,
S.-H.
,
Guo
,
Y.-C.
, and
Gu
,
Q.-W.
,
2021
, “
Sketch2model: View-Aware 3D Modeling From Single Free-Hand Sketches
,”
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
,
Virtual
,
June 19–25
, pp.
6012
6021
.
121.
Wang
,
L.
,
Qian
,
C.
,
Wang
,
J.
, and
Fang
,
Y.
,
2018
, “
Unsupervised Learning of 3D Model Reconstruction From Hand-Drawn Sketches
,”
Proceedings of the 26th ACM International Conference on Multimedia
,
Seoul, South Korea
,
Oct. 22–26
, pp.
1820
1828
.
122.
Smirnov
,
D.
,
Bessmeltsev
,
M.
, and
Solomon
,
J.
,
2019
, “
Deep Sketch-Based Modeling of Man-Made Shapes
,” Preprint arXiv: 1906.12337.
123.
Gao
,
L.
,
Yang
,
J.
,
Wu
,
T.
,
Yuan
,
Y.-J.
,
Fu
,
H.
,
Lai
,
Y.-K.
, and
Zhang
,
H.
,
2019
, “
Sdm-net: Deep Generative Network for Structured Deformable Mesh
,”
ACM Trans. Graph.
,
38
(
6
), pp.
1
15
.
124.
Mo
,
K.
,
Guerrero
,
P.
,
Yi
,
L.
,
Su
,
H.
,
Wonka
,
P.
,
Mitra
,
N. J.
, and
Guibas
,
L. J.
,
2019
, “
Structurenet: Hierarchical Graph Networks for 3D Shape Generation
,”
ACM Trans. Graph.
,
38
(
6
), pp.
1
19
.
125.
Chen
,
W.
, and
Fuge
,
M.
,
2019
, “
Synthesizing Designs With Interpart Dependencies Using Hierarchical Generative Adversarial Networks
,”
ASME J. Mech. Des.
,
141
(
11
), p.
111403
.
126.
Qi
,
C. R.
,
Su
,
H.
,
Mo
,
K.
, and
Guibas
,
L. J.
,
2017
, “
Pointnet: Deep Learning on Point Sets for 3D Classification and Segmentation
,”
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
,
Honolulu, HI
,
July 22–25
, pp.
652
660
.
127.
Yang
,
M. C.
,
2003
, “
Concept Generation and Sketching: Correlations With Design Outcome
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Chicago, IL
,
Aug. 3–6
, pp.
829
834
.
128.
Wu
,
R.
,
Xiao
,
C.
, and
Zheng
,
C.
,
2021
, “
Deepcad: A Deep Generative Network for Computer-Aided Design Models
,”
Proceedings of the IEEE/CVF International Conference on Computer Vision
,
Virtual
,
Oct. 11–17
, pp.
6772
6782
.
129.
Para
,
W.
,
Bhat
,
S.
,
Guerrero
,
P.
,
Kelly
,
T.
,
Mitra
,
N.
,
Guibas
,
L. J.
, and
Wonka
,
P.
,
2021
, “
Sketchgen: Generating Constrained CAD Sketches
,”
Advances in Neural Information Processing Systems
,
Virtual
,
Dec. 6–14
, pp.
5077
5088
.
130.
Ganin
,
Y.
,
Bartunov
,
S.
,
Li
,
Y.
,
Keller
,
E.
, and
Saliceti
,
S.
,
2021
, “
Computer-Aided Design as Language
,”
Conferences on Neural Information Processing Systems
,
Virtual
,
Dec. 6–12
, pp.
5885
5897
.
131.
Willis
,
K. D.
,
Jayaraman
,
P. K.
,
Lambourne
,
J. G.
,
Chu
,
H.
, and
Pu
,
Y.
,
2021
, “
Engineering Sketch Generation for Computer-Aided Design
,”
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
,
Virtual
,
June 19–25
, pp.
2105
2114
.
132.
Jayaraman
,
P. K.
,
Sanghi
,
A.
,
Lambourne
,
J. G.
,
Willis
,
K. D.
,
Davies
,
T.
,
Shayani
,
H.
, and
Morris
,
N.
,
2021
, “
Uv-net: Learning From Boundary Representations
,”
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
,
Virtual
,
June 19–25
, pp.
11703
11712
.
133.
Koch
,
S.
,
Matveev
,
A.
,
Jiang
,
Z.
,
Williams
,
F.
,
Artemov
,
A.
,
Burnaev
,
E.
,
Alexa
,
M.
,
Zorin
,
D.
, and
Panozzo
,
D.
,
2019
, “
Abc: A Big CAD Model Dataset for Geometric Deep Learning
,”
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
,
Long Beach, CA
,
June 15–20
, pp.
9601
9611
.
134.
Seff
,
A.
,
Ovadia
,
Y.
,
Zhou
,
W.
, and
Adams
,
R. P.
,
2020
, “
Sketchgraphs: A Large-Scale Dataset for Modeling Relational Geometry in Computer-Aided Design
,” Preprint arXiv:2007.08506.
135.
Gryaditskaya
,
Y.
,
Sypesteyn
,
M.
,
Hoftijzer
,
J. W.
,
Pont
,
S. C.
,
Durand
,
F.
, and
Bousseau
,
A.
,
2019
, “
Opensketch: A Richly-Annotated Dataset of Product Design Sketches
,”
ACM Trans. Graph.
,
38
(
6
), pp.
232
1
.
136.
Regenwetter
,
L.
,
Curry
,
B.
, and
Ahmed
,
F.
,
2021
, “
Biked: A Dataset and Machine Learning Benchmarks for Data-Driven Bicycle Design
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Virtual
,
Aug. 17–19
,
p. V03AT03A019
.
137.
Fuge
,
M.
,
2022
, “
The Frontiers in Design Representation (Finder) Summer School
,” https://ideal.umd.edu/FinDeR/, Accessed October 1, 2022.
138.
Li
,
X.
,
Demirel
,
H. O.
,
Goldstein
,
M. H.
, and
Sha
,
Z.
,
2021
, “
Exploring Generative Design Thinking for Engineering Design and Design Education
,”
2021 ASEE Midwest Section Conference
,
Virtual
,
Sept. 13–15
.
139.
Lin
,
T.-Y.
,
Maire
,
M.
,
Belongie
,
S.
,
Hays
,
J.
,
Perona
,
P.
,
Ramanan
,
D.
,
Dollár
,
P.
, and
Zitnick
,
C. L.
,
2014
, “
Microsoft Coco: Common Objects in Context
,”
European Conference on Computer Vision
,
Zurich, Switzerland
,
Sept. 6–12
, pp.
740
755
.
140.
Chen
,
Z.
, and
Zhang
,
H.
,
2019
, “
Learning Implicit Fields for Generative Shape Modeling
,”
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
,
Long Beach, CA
,
June 16–20
, pp.
5939
5948
.
141.
Kim
,
J.-H.
,
Kitaev
,
N.
,
Chen
,
X.
,
Rohrbach
,
M.
,
Zhang
,
B.-T.
,
Tian
,
Y.
,
Batra
,
D.
, and
Parikh
,
D.
,
2019
, “
Codraw: Collaborative Drawing as a Testbed for Grounded Goal-Driven Communication
,”
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics
,
Florence, Italy
,
July 28–Aug. 2
, pp.
6495
6513
.
142.
Zhang
,
W.
,
Wang
,
X.
, and
Tang
,
X.
,
2011
, “
Coupled Information-Theoretic Encoding for Face Photo-Sketch Recognition
,”
Proceedings of the IEEE Conference Computer Vision and Pattern Recognition
,
Colorado Springs, CO
,
June 20–25
, pp.
513
520
.
143.
Li
,
J.
,
Xu
,
K.
,
Chaudhuri
,
S.
,
Yumer
,
E.
,
Zhang
,
H.
, and
Guibas
,
L.
,
2017
, “
Grass: Generative Recursive Autoencoders for Shape Structures
,”
ACM Trans. Graph.
,
36
(
4
), pp.
1
14
.
144.
Feng
,
Y.
,
Zhang
,
Z.
,
Zhao
,
X.
,
Ji
,
R.
, and
Gao
,
Y.
,
2018
, “
GVCNN: Group-View Convolutional Neural Networks for 3D Shape Recognition
,”
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
,
Salt Lake City, UT
,
June 18–22
, pp.
264
272
.
145.
Kanezaki
,
A.
,
Matsushita
,
Y.
, and
Nishida
,
Y.
,
2019
, “
Rotationnet for Joint Object Categorization and Unsupervised Pose Estimation From Multi-view Images
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
43
(
1
), pp.
269
283
.
146.
Shajahan
,
D. A.
,
Nayel
,
V.
, and
Muthuganapathy
,
R.
,
2019
, “
Roof Classification From 3-D Lidar Point Clouds Using Multiview CNN With Self-attention
,”
IEEE Geosci. Remote Sens. Lett.
,
17
(
8
), pp.
1465
1469
.
147.
Qi
,
A.
,
Song
,
Y.-Z.
, and
Xiang
,
T.
,
2018
, “
Semantic Embedding for Sketch-Based 3D Shape Retrieval
,”
British Machine Vision Conference
,
Newcastle, UK
,
Sept. 2–5
, pp.
11
12
.
148.
Darom
,
T.
, and
Keller
,
Y.
,
2012
, “
Scale-Invariant Features for 3-d Mesh Models
,”
IEEE Trans. Image Process.
,
21
(
5
), pp.
2758
2769
.
149.
Umetani
,
N.
,
2017
, “
Exploring Generative 3D Shapes Using Autoencoder Networks
,”
SIGGRAPH Asia 2017 Technical Briefs
,
Bangkok, Thailand
,
Nov. 27–30
, pp.
1
4
.
150.
Mo
,
K.
,
Zhu
,
S.
,
Chang
,
A. X.
,
Yi
,
L.
,
Tripathi
,
S.
,
Guibas
,
L. J.
, and
Su
,
H.
,
2019
, “
Partnet: A Large-Scale Benchmark for Fine-Grained and Hierarchical Part-Level 3D Object Understanding
,”
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
,
Long Beach, CA
,
June 16–20
, pp.
909
918
.
151.
Remelli
,
E.
,
Lukoianov
,
A.
,
Richter
,
S.
,
Guillard
,
B.
,
Bagautdinov
,
T.
,
Baque
,
P.
, and
Fua
,
P.
,
2020
, “
Meshsdf: Differentiable Iso-surface Extraction
,”
Conference on Neural Information Processing Systems
,
Virtual
,
Dec. 6–12
, pp.
22468
22478
.
152.
Kar
,
A.
,
Häne
,
C.
, and
Malik
,
J.
,
2017
, “
Learning a Multi-view Stereo Machine
,”
Conference on Neural Information Processing Systems
,
Long Beach, CA
,
Dec. 4–9
, pp.
365
376
.
153.
Sangkloy
,
P.
,
Burnell
,
N.
,
Ham
,
C.
, and
Hays
,
J.
,
2016
, “
The Sketchy Database: Learning to Retrieve Badly Drawn Bunnies
,”
ACM Trans. Graph.
,
35
(
4
), pp.
1
12
.
154.
Eitz
,
M.
,
Hays
,
J.
, and
Alexa
,
M.
,
2012
, “
How Do Humans Sketch Objects
?”
ACM Trans. Graph.
,
31
(
4
), pp.
1
10
.
155.
Mahmood
,
N.
,
Ghorbani
,
N.
,
Troje
,
N. F.
,
Pons-Moll
,
G.
, and
Black
,
M. J.
,
2019
, “
Amass: Archive of Motion Capture as Surface Shapes
,”
Proceedings of the IEEE/CVF International Conference on Computer Vision
,
Seoul, South Korea
,
Oct. 27–Nov. 2
, pp.
5442
5451
.
156.
Chen
,
X.
,
Golovinskiy
,
A.
, and
Funkhouser
,
T.
,
2009
, “
A Benchmark for 3D Mesh Segmentation
,”
ACM Trans. Graph.
,
28
(
3
), pp.
1
12
.
157.
Park
,
K.
,
Rematas
,
K.
,
Farhadi
,
A.
, and
Seitz
,
S. M.
,
2018
, “
Photoshape: Photorealistic Materials for Large-Scale Shape Collections
,”
ACM Trans. Graph.
,
37
(
6
), pp.
1
12
.
158.
Dosovitskiy
,
A.
,
Ros
,
G.
,
Codevilla
,
F.
,
Lopez
,
A.
, and
Koltun
,
V.
,
2017
, “
Carla: An Open Urban Driving Simulator
,”
Conference on Robot Learning
,
Mountain View, CA
,
Nov. 13–15
, pp.
1
16
.
159.
Zhou
,
Q.
, and
Jacobson
,
A.
,
2016
, “
Thingi10k: A Dataset of 10,000 3D-Printing Models
,” Preprint arXiv:1605.04797.
You do not currently have access to this content.