Abstract

Eliciting informative user opinions from online reviews is a key success factor for innovative product design and development. The unstructured, noisy, and verbose nature of user reviews, however, often complicate large-scale need finding in a format useful for designers without losing important information. Recent advances in abstractive text summarization have created the opportunity to systematically generate opinion summaries from online reviews to inform the early stages of product design and development. However, two knowledge gaps hinder the applicability of opinion summarization methods in practice. First, there is a lack of formal mechanisms to guide the generative process with respect to different categories of product attributes and user sentiments. Second, the annotated training datasets needed for supervised training of abstractive summarization models are often difficult and costly to create. This article addresses these gaps by (1) devising an efficient computational framework for abstractive opinion summarization guided by specific product attributes and sentiment polarities, and (2) automatically generating a synthetic training dataset that captures various degrees of granularity and polarity. A hierarchical multi-instance attribute-sentiment inference model is developed for assembling a high-quality synthetic dataset, which is utilized to fine-tune a pretrained language model for abstractive summary generation. Numerical experiments conducted on a large dataset scraped from three major e-Commerce retail stores for apparel and footwear products indicate the performance, feasibility, and potentials of the developed framework. Several directions are provided for future exploration in the area of automated opinion summarization for user-centered design.

References

1.
Schaffhausen
,
C. R.
, and
Kowalewski
,
T. M.
,
2015
, “
Large-Scale Needfinding: Methods of Increasing User-Generated Needs From Large Populations
,”
ASME J. Mech. Des.
,
137
(
7
), p.
071403
.
2.
Cooper
,
R. G.
,
Edgett
,
S. J.
, and
Kleinschmidt
,
E. J.
,
2004
, “
Benchmarking Best NPD Practices—III
,”
Res. Tech. Manage.
,
47
(
6
), pp.
43
55
.
3.
Osborn
,
A. F.
,
1953
,
Applied Imagination
,
Scribner’s
,
New York
.
4.
Marion
,
T. J.
, and
Fixson
,
S. K.
,
2018
,
The Innovation Navigator: Transforming Your Organization in the Era of Digital Design and Collaborative Culture
,
University of Toronto Press
,
Canada
.
5.
Eckert
,
C.
,
1999
, “
Managing Effective Communication in Knitwear Design
,”
Des. J.
,
2
(
3
), pp.
29
42
.
6.
Rasoulifar
,
G.
,
Eckert
,
C.
, and
Prudhomme
,
G.
,
2015
, “
Communicating Consumer Needs in the Design Process of Branded Products
,”
ASME J. Mech. Des.
,
137
(
7
), p.
071404
.
7.
Franke
,
N.
,
Schreier
,
M.
, and
Kaiser
,
U.
,
2010
, “
The ‘I Designed It Myself’ Effect in Mass Customization
,”
Manage. Sci.
,
56
(
1
), pp.
125
140
.
8.
Radford
,
A.
,
Narasimhan
,
K.
,
Salimans
,
T.
, and
Sutskever
,
I.
,
2018
, “Improving Language Understanding by Generative Pre-Training,” Technical Report.
9.
Devlin
,
J.
,
Chang
,
M.-W.
,
Lee
,
K.
, and
Toutanova
,
K.
,
2018
, “
BERT: Pre-Training of Deep Bidirectional Transformers for Language Understanding
,”
arXiv preprint
. https://arxiv.org/abs/1810.04805
10.
Mirtalaie
,
M. A.
,
Hussain
,
O. K.
,
Chang
,
E.
, and
Hussain
,
F. K.
,
2017
, “
A Decision Support Framework for Identifying Novel Ideas in New Product Development From Cross-Domain Analysis
,”
Inform. Syst.
,
69
(
C
), pp.
59
80
.
11.
Pang
,
B.
, and
Lee
,
L.
,
2006
, “
Opinion Mining and Sentiment Analysis.
,”
Found. Trends Information Retrieval
,
1
(
2
), pp.
91
231
.
12.
Tang
,
H.
,
Tan
,
S.
, and
Cheng
,
X.
,
2009
, “
A Survey on Sentiment Detection of Reviews
,”
Expert. Syst. Appl.
,
36
(
7
), pp.
10760
10773
.
13.
Zhang
,
L.
,
Wang
,
S.
, and
Liu
,
B.
,
2018
, “
Deep Learning for Sentiment Analysis: A Survey
,”
Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery
,
8
(
4
), p. e1253
14.
Liu
,
B.
,
2020
,
Sentiment Analysis: Mining Opinions, Sentiments, and Emotions
, Vol.
38
,
The Cambridge University Press
,
Cambridge, MA
, pp.
41
51
.
15.
Ireland
,
R.
, and
Liu
,
A.
,
2018
, “
Application of Data Analytics for Product Design: Sentiment Analysis of Online Product Reviews
,”
CIRP. J. Manuf. Sci. Technol.
,
23
, pp.
128
144
.
16.
Nasukawa
,
T.
, and
Yi
,
J.
,
OCT 2003
, “
Sentiment Analysis: Capturing Favorability Using Natural Language Processing
,” Proceedings of the 2nd International Conference on Knowledge Capture, pp.
70
77
.
17.
Han
,
Y.
, and
Moghaddam
,
M.
,
2020
, “
Eliciting Attribute-Level User Needs From Online Reviews With Deep Language Models and Information Extraction
,”
ASME J. Mech. Des.
,
143
(
6
), p.
061403
.
18.
Han
,
Y.
, and
Moghaddam
,
M.
,
2021
, “
Analysis of Sentiment Expressions for User-Centered Design
,”
Expert Syst. Appl.
,
171
, p.
114604
.
19.
Zheng
,
H.
, and
Lapata
,
M.
,
2019
, “
Sentence Centrality Revisited for Unsupervised Summarization
,”
arXiv preprint
. https://arxiv.org/abs/1906.03508
20.
Cachola
,
I.
,
Lo
,
K.
,
Cohan
,
A.
, and
Weld
,
D. S.
,
2020
, “
TLDR: Extreme Summarization of Scientific Documents
,”
arXiv preprint
. https://arxiv.org/abs/2004.15011
21.
Angelidis
,
S.
, and
Lapata
,
M.
,
2018
, “
Summarizing Opinions: Aspect Extraction Meets Sentiment Prediction and They Are Both Weakly Supervised
,”
arXiv preprint
. https://arxiv.org/abs/1808.08858
22.
Ganesan
,
K.
,
Zhai
,
C. X.
, and
Han
,
J.
,
2010
, “
Opinosis: A Graph Based Approach to Abstractive Summarization of Highly Redundant Opinions
,”
ACL Anthology
, pp.
340
348
.
23.
Di Fabbrizio
,
G.
,
Stent
,
A.
, and
Gaizauskas
,
R.
,
2014
, “
A Hybrid Approach to Multi-Document Summarization of Opinions in Reviews
,”
ACL Anthology
, pp.
54
63
.
24.
Liu
,
Y.
, and
Lapata
,
M.
,
2019
, “
Text Summarization With Pretrained Encoders
,”
ACL Anthology
, pp.
3730
3740
.
25.
Ray
,
P.
, and
Chakrabarti
,
A.
,
2020
, “
A Mixed Approach of Deep Learning Method and Rule-Based Method to Improve Aspect Level Sentiment Analysis
,”
Appl. Comput. Inform
.
26.
Timoshenko
,
A.
, and
Hauser
,
J. R.
,
2019
, “
Identifying Customer Needs From User-Generated Content
,”
Market. Sci
,
38
(
1
), pp.
1
20
.
27.
Bohm
,
M. R.
, and
Stone
,
R. B.
,
2008
, “
Product Design Support: Exploring a Design Repository System
,” ASME International Mechanical Engineering Congress and Exposition, American Society of Mechanical Engineers Digital Collection, Vol. 47047, pp.
55
65
.
28.
Lu
,
Y. Q.
,
Liu
,
P.-L.
,
Ding
,
X.-M.
, and
Fu
,
Q.-R.
,
2008
, “
Plastic Product Evaluation Based on Mold Conceptual Design
,” ASME International Mechanical Engineering Congress and Exposition, American Society of Mechanical Engineers Digital Collection, Vol. 42150, pp.
319
327
.
29.
Chen
,
X.
,
Sun
,
C.
,
Wang
,
J.
,
Li
,
S.
,
Si
,
L.
,
Zhang
,
M.
, and
Zhou
,
G.
,
2020
, “
Aspect Sentiment Classification With Document-Level Sentiment Preference Modeling
,” Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp.
3667
3677
.
30.
Wang
,
K.
,
Shen
,
W.
,
Yang
,
Y.
,
Quan
,
X.
, and
Wang
,
R.
,
2020
, “
Relational Graph Attention Network for Aspect-Based Sentiment Analysis
,”
arXiv
. https://arxiv.org/abs/2004.12362
31.
Rietzler
,
A.
,
Stabinger
,
S.
,
Opitz
,
P.
, and
Engl
,
S.
,
2019
, “
Adapt or Get Left Behind: Domain Adaptation Through BERT Language Model Finetuning for Aspect-Target Sentiment Classification
,”
arXiv
. https://arxiv.org/abs/1908.11860
32.
Yu
,
J.
, and
Jiang
,
J.
,
2019
, “
Adapting BERT for Target-Oriented Multimodal Sentiment Classification
,” IJCAI, p.
5408
.
33.
Karimi
,
A.
,
Rossi
,
L.
, and
Prati
,
A.
,
2020
, “
Adversarial Training for Aspect-Based Sentiment Analysis with BERT
,”
25th International Conference on Pattern Recognition (ICPR)
, IEEE, pp.
8797
8803
.
34.
Hoang
,
M.
,
Bihorac
,
O. A.
, and
Rouces
,
J.
,
2019
, “
Aspect-Based Sentiment Analysis Using BERT
,” Proceedings of the 22nd Nordic Conference on Computational Linguistics, pp.
187
196
.
35.
Xu
,
H.
,
Liu
,
B.
,
Shu
,
L.
, and
Yu
,
P. S.
,
2019
, “
BERT Post-Training for Review Reading Comprehension and Aspect-Based Sentiment Analysis
,”
arXiv preprint
https://arxiv.org/abs/1904.02232.
36.
Ma
,
Y.
,
Peng
,
H.
, and
Cambria
,
E.
,
Apr 2018
, “
Targeted Aspect-Based Sentiment Analysis via Embedding Commonsense Knowledge Into an Attentive LSTM
,” Proceedings of the AAAI conference on artificial intelligence, Vol. 32, No. 1.
37.
Dai
,
Z.
, and
Huang
,
R.
,
2021
, “
A Joint Model for Structure-based News Genre Classification with Application to Text Summarization
,” Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021, pp.
3332
3342
.
38.
Sun
,
E.
,
Hou
,
Y.
,
Wang
,
D.
,
Zhang
,
Y.
, and
Wang
,
N. X. R.
,
2021
, “
D2S: Document-to-Slide Generation Via Query-Based Text Summarization
,”
arXiv
https://arxiv.org/abs/2105.03664.
39.
Liu
,
Y.
,
Shen
,
S.
, and
Lapata
,
M.
,
2020
, “
Noisy Self-Knowledge Distillation for Text Summarization
,”
arXiv
. https://arxiv.org/abs/2009.07032
40.
Liu
,
Y.
, and
Lapata
,
M.
,
2019
, “
Text Summarization With Pretrained Encoders
,”
arXiv
. https://arxiv.org/abs/1908.08345
41.
Shao
,
Z.
,
Bian
,
H.
,
Chen
,
Y.
,
Wang
,
Y.
,
Zhang
,
J.
,
Ji
,
X.
, and
Zhang
,
Y.
,
2021
, “
TransMIL: Transformer Based Correlated Multiple Instance Learning for Whole Slide Image Classification
,”
Adv. Neural Inf. Process Syst.
,
34
, pp.
2136
2147
.
42.
Bowman
,
S. R.
,
Vilnis
,
L.
,
Vinyals
,
O.
,
Dai
,
A. M.
,
Jozefowicz
,
R.
, and
Bengio
,
S.
,
2015
, “
Generating Sentences From a Continuous Space
,”
arXiv
. https://arxiv.org/abs/1511.06349
43.
See
,
A.
,
Liu
,
P. J.
, and
Manning
,
C. D.
,
2017
, “
Get to the Point: Summarization With Pointer-Generator Networks
,”
arXiv
. https://arxiv.org/abs/1704.04368
44.
Bražinskas
,
A.
,
Lapata
,
M.
, and
Titov
,
I.
,
2019
, “
Unsupervised Opinion Summarization as Copycat-Review Generation
,”
arXiv
. https://arxiv.org/abs/1911.02247
45.
Lin
,
C.-Y.
,
2004
, “
Rouge: A Package for Automatic Evaluation of Summaries
,” Text Summarization Branches Out, pp.
74
81
.
46.
Cavnar
,
W. B.
, and
Trenkle
,
J. M.
,
1994
, “
N-gram-Based Text Categorization
,”
Proceedings of SDAIR-94, 3rd Annual Symposium on Document Analysis and Information Retrieval (Vol. 161175)
.
47.
Nayeem
,
M. T.
,
Fuad
,
T. A.
, and
Chali
,
Y.
,
2018
, “
Abstractive Unsupervised Multi-Document Summarization Using Paraphrastic Sentence Fusion
,” Proceedings of the 27th International Conference on Computational Linguistics, pp.
1191
1204
.
48.
Qiu
,
Y.
, and
Jin
,
Y.
,
2021
, “
Engineering Document Summarization Using Sentence Representations Generated by Bidirectional Language Model
,” International Design Engineering Technical Conferences and Computers and Information in Engineering Conference,
85376
,
American Society of Mechanical Engineers
, p.
V002T02A062
.
49.
Liu
,
Y.
, and
Lapata
,
M.
,
2019
, “
Hierarchical Transformers for Multi-Document Summarization
,”
arXiv preprint
, https://arxiv.org/abs/1905.13164 pp.
5070
5081
.
50.
Nayeem
,
M. T.
,
Fuad
,
T. A.
, and
Chali
,
Y.
,
2018
, “
Abstractive Unsupervised Multi-Document Summarization Using Paraphrastic Sentence Fusion
,” Proceedings of the 27th International Conference on Computational Linguistics, pp.
1191
1204
.
51.
Jin
,
H.
,
Wang
,
T.
, and
Wan
,
X.
,
2020
, “
Multi-Granularity Interaction Network for Extractive and Abstractive Multi-Document Summarization
,” Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp.
6244
6254
.
52.
Raffel
,
C.
,
Shazeer
,
N.
,
Roberts
,
A.
,
Lee
,
K.
,
Narang
,
S.
,
Matena
,
M.
,
Zhou
,
Y.
,
Li
,
W.
, and
Liu
,
P. J.
,
2019
, “
Exploring the Limits of Transfer Learning With a Unified Text-to-Text Transformer
,”
J. Mach. Learn. Res.
,
21
(
140
), pp.
1
67
.
53.
Schumann
,
R.
,
Mou
,
L.
,
Lu
,
Y.
,
Vechtomova
,
O.
, and
Markert
,
K.
,
2020
, “
Discrete Optimization for Unsupervised Sentence Summarization with Word-Level Extraction
,”
arXiv
.https://arxiv.org/abs/2005.01791
54.
Pugoy
,
R. A.
, and
Kao
,
H.-Y.
,
2021
, “
Unsupervised Extractive Summarization-Based Representations for Accurate and Explainable Collaborative Filtering
,” Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp.
2981
2990
.
55.
Kingma
,
D. P.
, and
Ba
,
J.
,
2014
, “
Adam: A Method for Stochastic Optimization
,”
arXiv
. https://arxiv.org/abs/1412.6980
56.
Angelidis
,
S.
, and
Lapata
,
M.
,
2018
, “
Summarizing Opinions: Aspect Extraction Meets Sentiment Prediction and They Are Both Weakly Supervised
,”
arXiv
. https://arxiv.org/abs/1808.08858
57.
Angelidis
,
S.
,
Kim Amplayo
,
R.
,
Suhara
,
Y.
,
Wang
,
X.
, and
Lapata
,
M.
,
2021
, “
Extractive Opinion Summarization in Quantized Transformer Spaces
,”
Trans. Assoc. Comput. Ling.
,
9
, pp.
277
293
.
58.
Chu
,
E.
, and
Liu
,
P.
,
2019
, “
MeanSum: A Neural Model for Unsupervised Multi-Document Abstractive Summarization
,” International Conference on Machine Learning,
PMLR
, pp.
1223
1232
.
59.
Amplayo
,
R. K., Angelidis, S.
, and
Lapata
,
M.
,
2021
, “
Unsupervised Opinion Summarization With Noising and Denoising
,” Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 35, No. 14, pp.
1934
1945
.
60.
Elsahar
,
H.
,
Coavoux
,
M.
,
Rozen
,
J.
, and
Gallé
,
M.
,
2021
, “
Self-Supervised and Controlled Multi-Document Opinion Summarization
,”
arXiv preprint
, pp.
1646
1662
. https://arxiv.org/abs/2004.14754
61.
Amplayo
,
R. K.
,
Angelidis
,
S.
, and
Lapata
,
M.
,
2021
, “
Aspect-Controllable Opinion Summarization
,”
arXiv
. https://arxiv.org/abs/2109.03171
62.
Mani
,
I.
,
Maybury
,
M. T.
,
Maybury
,
M. T.
, and
Maybury
,
M.
,
1999
,
Advances in Automatic Text Summarization
,
MIT Press
,
MA
.
63.
Hernández-Castañeda
,
Á.
,
García-Hernández
,
R. A.
,
Ledeneva
,
Y.
, and
Millán-Hernández
,
C. E.
,
2020
, “
Extractive Automatic Text Summarization Based on Lexical-Semantic Keywords
,”
IEEE Access
,
8
, pp.
49896
49907
.
64.
Li
,
C.
,
Xu
,
W.
,
Li
,
S.
, and
Gao
,
S.
,
2018
, “
Guiding Generation for Abstractive Text Summarization Based on Key Information Guide Network
,” Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pp.
55
60
.
65.
Lee
,
T. Y.
, and
Bradlow
,
E. T.
,
2011
, “
Automated Marketing Research Using Online Customer Reviews
,”
J. Market. Res.
,
48
(
5
), pp.
881
894
.
66.
Ravi
,
K.
, and
Ravi
,
V.
,
2015
, “
A Survey on Opinion Mining and Sentiment Analysis: Tasks, Approaches and Applications
,”
Knowledge Based Syst.
,
89
, pp.
14
46
.
67.
Yadav
,
N.
, and
Chatterjee
,
N.
,
2016
, “
Text Summarization Using Sentiment Analysis for DUC Data
,” 2016 International Conference on Information Technology (ICIT),
IEEE
, pp.
229
234
.
68.
Musto
,
C.
,
Rossiello
,
G.
,
de Gemmis
,
M.
,
Lops
,
P.
, and
Semeraro
,
G.
,
2019
, “
Combining Text Summarization and Aspect-Based Sentiment Analysis of Users’ Reviews to Justify Recommendations
,” Proceedings of the 13th ACM Conference on Recommender Systems, pp.
383
387
.
69.
Mirani
,
T. B.
, and
Sasi
,
S.
,
2017
, “
Two-Level Text Summarization From Online News Sources With Sentiment Analysis
,” 2017 International Conference on Networks & Advances in Computational Technologies (NetACT),
IEEE
, pp.
19
24
.
70.
Alsaqer
,
A. F.
, and
Sasi
,
S.
,
2017
, “
Movie Review Summarization and Sentiment Analysis Using Rapidminer
,” 2017 International Conference on Networks & Advances in Computational Technologies (NetACT),
IEEE
, pp.
329
335
.
71.
Tsai
,
C.-F.
,
Chen
,
K.
,
Hu
,
Y.-H.
, and
Chen
,
W.-K.
,
2020
, “
Improving Text Summarization of Online Hotel Reviews With Review Helpfulness and Sentiment
,”
Tourism Manage.
,
80
, p.
104122
.
72.
“spaCy, Industrial-Strength Natural Language Processing in Python,” https://spacy.io, Accessed January 23, 2022.
73.
Devlin
,
J.
,
Chang
,
M.-W.
,
Lee
,
K.
, and
Toutanova
,
K.
,
2018
, “
BERT: Pre-Training of Deep Bidirectional Transformers for Language Understanding
,”
arXiv preprint
. https://arxiv.org/abs/1810.04805
74.
Vaswani
,
A.
,
Shazeer
,
N.
,
Parmar
,
N.
,
Uszkoreit
,
J.
,
Jones
,
L.
,
Gomez
,
A. N.
,
Kaiser
,
L.
, and
Polosukhin
,
I.
,
2017
, “
Attention Is All You Need
,”
Adv. Neural Inf. Process Syst.
,
30
.
75.
NLTK
,
2022
, “
Natural Language Toolkit
, https://www.nltk.org, Accessed July 31, 2022.
76.
“spaCy, Industrial-Strength Natural Language Processing in Python, https://spacy.io, Accessed July 31, 2022.
77.
Ramesh
,
G. S.
,
Manyam
,
V.
,
Mandula
,
V.
,
Myana
,
P.
,
Macha
,
S.
, and
Reddy
,
S.
,
2022
, “
Abstractive Text Summarization Using T5 Architecture
,” Proceedings of Second International Conference on Advances in Computer Engineering and Communication Systems, Springer, Singapore, pp.
535
543
.
78.
Agrawal
,
Y.
,
Thakre
,
A.
,
Tapas
,
T.
,
Kedia
,
A.
,
Telkhade
,
Y.
, and
Rathod
,
V.
,
2021
, “
Comparative Analysis of NLP Models for Google Meet Transcript Summarization
,”
EasyChair Preprint
, (5404).
79.
Bohra
,
M.
,
Dadure
,
P.
, and
Pakray
,
P.
,
2022
, “
Comparative Analysis of T5 Model for Abstractive Text Summarization on Different Datasets
.”
80.
Hinton
,
G. E.
,
Srivastava
,
N.
,
Krizhevsky
,
A.
,
Sutskever
,
I.
, and
Salakhutdinov
,
R. R.
,
2012
, “
Improving Neural Networks by Preventing Co-Adaptation of Feature Detectors
,”
arXiv
. https://arxiv.org/abs/1207.0580
81.
Lin
,
C.-Y.
,
2014
, “
ROUGE: A Package for Automatic Evaluation of Summaries
,” Text Summarization Branches Out, pp.
74
81
.
82.
TextBlob
,
2021
, “
Simplified Text Processing—TextBlob 0.16.0 Documentation
,” https://textblob.readthedocs.io/en/dev, Accessed August 3, 2022.
83.
Vaswani
,
A.
,
Shazeer,
,
N.
,
Parmer
,
N.
,
Uszkoreit
,
J.
,
Jones
,
L.
,
Gomez
,
A. N.
,
Kaiser
,
Ł.
, and
Polosukhin
,
I.
,
2017
, “
Attention is all you Need
,”
Adv. Neural Inf. Process Syst.
,
30
.
84.
Shawe-Taylor
,
J.
, and
Cristianini
,
N.
,
2002
, “
On the Generalization of Soft Margin Algorithms
,”
IEEE Trans. Inf. Theory
,
48
(
10
), pp.
2721
2735
.
85.
Nadeau
,
D.
, and
Sekine
,
S.
,
2007
, “
A Survey of Named Entity Recognition and Classification
,”
Lingvisticæ Investigationes
,
30
(
1
), pp.
1
20
.
86.
Li
,
X.
,
Bing
,
L.
,
Li
,
P.
,
Lam
,
W.
, and
Yang
,
Z.
,,
2018
, “
Aspect Term ExtractionWith History Attention and Selective Transformation
,”
arXiv preprint
. https://arxiv.org/abs/1805.00760
87.
Yadav
,
V.
, and
Bethard
,
S.
,
2019
, “
A Survey on Recent Advances in Named Entity Recognition From Deep Learning Models
,”
arXiv
. https://arxiv.org/abs/1910.11470
88.
Liu
,
Y.
,
Jin
,
J.
,
Ji
,
P.
,
Harding
,
J. A.
, and
Fung
,
R. Y. K.
,
2013
, “
Identifying Helpful Online Reviews: A Product Designer’s Perspective
,”
Comput. Aided Des.
,
45
(
2
), pp.
180
194
.
89.
Li
,
X.
, and
Hitt
,
L. M.
,
JUL 2008
, “
Self-Selection and Information Role of Online Product Reviews
,”
Inf. Syst. Res
,
19
(
4
), pp.
456
474
.
90.
Rai
,
R.
,
2012
, “
Identifying Key Product Attributes and Their Importance Levels From Online Customer Reviews
,” International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers Digital Collection, Vol. 45028, pp.
533
540
.
91.
Jin
,
J.
,
Ji
,
P.
, and
Gu
,
R.
,
2016
, “
Identifying Comparative Customer Requirements From Product Online Reviews for Competitor Analysis
,”
Eng. Appl. Artif. Intell.
,
49
, pp.
61
73
.
You do not currently have access to this content.