Abstract

Reconfigurable mechanisms attract increasing attention for the characteristic to change structure configurations and motion behaviors in various multifunctional systems. By drawing inspiration from a kirigami fold, this paper presents a metamorphic double-loop linkage with multiple single-degree-of-freedom (DOF) reconfiguration branches, which is generated through combining two reconfigurable 6R plane-symmetric linkages. Mobility analysis of the metamorphic linkage is carried out in terms of the screw-loop theory equation, as well as the induced reconfiguration position identification. Then, this paper presents the specific reconfiguration conditions for the two single-loop components in this linkage, and a physical prototype fabricated by 3D printing verifies the ability of configuration reconstruction. Sixteen types of evolved motion branches are constructed by implementing different reconfiguration constraints, respectively, and corresponding kinematic paths are described by employing the specific angle between axes of joints. Furthermore, these evolved motion branches of this metamorphic linkage provide novel examples of mobile assemblies among several fundamental single-loop linkages.

References

1.
Dai
,
J.
, and
Jones
,
J.
,
1999
, “
Mobility in Metamorphic Mechanisms of Foldable/Erectable Kinds
,”
ASME J. Mech. Des.
,
121
(
3
), pp.
375
382
.
2.
Gan
,
D.
,
Dai
,
J.
, and
Liao
,
Q.
,
2009
, “
Mobility Change in Two Types of Metamorphic Parallel Mechanisms
,”
ASME J. Mech. Rob.
,
1
(
4
), p.
041007
.
3.
Wohlhart
,
K.
,
1996
,
Kinematotropic Linkages, in Recent Advances in Robot Kinematics
,
Springer
,
Dordrecht
, pp.
359
368
.
4.
Wohlhart
,
K.
,
1991
, “
Merging Two General Goldberg 5R Linkages to Obtain a New 6R Space Mechanism
,”
Mech. Mach. Theory
,
26
(
7
), pp.
659
668
.
5.
Galletti
,
C.
, and
Fanghella
,
P.
,
2001
, “
Single-Loop Kinematotropic Mechanisms
,”
Mech. Mach. Theory
,
36
(
6
), pp.
743
761
.
6.
Kong
,
X.
, and
Huang
,
C.
,
2009
, “
Type Synthesis of Single-DOF Single-Loop Mechanisms With Two Operation Modes
,”
2009 ASME/IFToMM International Conference on Reconfigurable Mechanisms and Robots
,
London, UK
, June 22–24, IEEE, pp.
136
141
.
7.
Kong
,
X.
, and
Pfurner
,
M.
,
2015
, “
Type Synthesis and Reconfiguration Analysis of a Class of Variable-DOF Single-Loop Mechanisms
,”
Mech. Mach. Theory
,
85
, pp.
116
128
.
8.
Chen
,
Y.
, and
You
,
Z.
,
2009
, “
Two-Fold Symmetrical 6R Foldable Frames and Their Bifurcations
,”
Int. J. Solids Struct.
,
46
(
25–26
), pp.
4504
4514
.
9.
Song
,
C.
,
Chen
,
Y.
, and
Chen
,
I. M.
,
2013
, “
A 6R Linkage Reconfigurable Between the Line-Symmetric Bricard Linkage and the Bennett Linkage
,”
Mech. Mach. Theory
,
70
, pp.
278
292
.
10.
Chen
,
Y.
,
Feng
,
J.
, and
Liu
,
Y.
,
2016
, “
A Group-Theoretic Approach to the Mobility and Kinematic of Symmetric Over-Constrained Structures
,”
Mech. Mach. Theory
,
105
, pp.
91
107
.
11.
Feng
,
H.
,
Chen
,
Y.
,
Dai
,
J.
, and
Gogu
,
G.
,
2017
, “
Kinematic Study of the General Plane-Symmetric Bricard Linkage and Its Bifurcation Variations
,”
Mech. Mach. Theory
,
116
, pp.
89
104
.
12.
Lyu
,
S.
,
Yao
,
P.
,
Xiao
,
H.
,
Zhang
,
W.
, and
Ding
,
X.
,
2022
, “
Approximating Cylinders With Bundle-Folding Plane-Symmetric Bricard Linkages
,”
Int. J. Mech. Sci.
,
221
, p.
107231
.
13.
Qi
,
X.
,
Huang
,
H.
,
Miao
,
Z.
,
Li
,
B.
, and
Deng
,
Z.
,
2017
, “
Design and Mobility Analysis of Large Deployable Mechanisms Based on Plane-Symmetric Bricard Linkage
,”
ASME J. Mech. Des.
,
139
(
2
), p.
022302
.
14.
Zhang
,
K.
, and
Dai
,
J.
,
2014
, “Trifurcation of the Evolved Sarrus-Motion Linkage Based on Parametric Constraints,”
Advances in Robot Kinematics
,
Springer
,
Cham
, pp.
345
353
.
15.
Zhang
,
K.
,
Müller
,
A.
, and
Dai
,
J.
,
2016
, “A Novel Reconfigurable 7R Linkage With Multifurcation,”
Advances in Reconfigurable Mechanisms and Robots II
,
Springer
,
Cham
, pp.
15
25
.
16.
Zlatanov
,
D.
,
Bonev
,
I. A.
, and
Gosselin
,
C. M.
,
2002
, “Constraint Singularities as C-Space Singularities,”
Advances in Robot Kinematics
,
Springer
,
Dordrecht
, pp.
183
192
.
17.
Zhao
,
C.
,
Guo
,
H.
,
Liu
,
R.
,
Deng
,
Z.
, and
Li
,
B.
,
2018
, “
Design and Kinematic Analysis of a 3RRlS Metamorphic Parallel Mechanism for Large-Scale Reconfigurable Space Multifingered Hand
,”
ASME J. Mech. Rob.
,
10
(
4
), p.
041012
.
18.
Zhang
,
K.
,
Dai
,
J.
, and
Fang
,
Y.
,
2012
, “
Constraint Analysis and Bifurcated Motion of the 3PUP Parallel Mechanism
,”
Mech. Mach. Theory
,
49
(
3
), pp.
256
269
.
19.
Ye
,
W.
,
Fang
,
Y.
,
Zhang
,
K.
, and
Guo
,
S.
,
2014
, “
A New Family of Reconfigurable Parallel Mechanisms With Diamond Kinematotropic Chain
,”
Mech. Mach. Theory
,
74
, pp.
1
9
.
20.
Zeng
,
Q.
,
Fang
,
Y.
, and
Ehmann
,
K. F.
,
2011
, “
Design of a Novel 4-DOF Kinematotropic Hybrid Parallel Manipulator
,”
ASME J. Mech. Des.
,
133
(
12
), p.
121006
.
21.
Gan
,
D.
,
Dai
,
J.
,
Dias
,
J.
, and
Seneviratne
,
L.
,
2016
, “Reconfiguration and Static Joint Force Variation of a 3rRPS Metamorphic Parallel Mechanism With 3R and 1T2R Motion,”
Advances in Reconfigurable Mechanisms and Robots II
,
Springer
,
Cham
, pp.
213
222
.
22.
He
,
X.
,
Kong
,
X.
,
Chablat
,
D.
,
Caro
,
S.
, and
Hao
,
G.
,
2014
, “
Kinematic Analysis of a Single-Loop Reconfigurable 7R Mechanism With Multiple Operation Modes
,”
Robotica
,
32
(
7
), pp.
1171
1188
.
23.
Pfurner
,
M.
,
Kong
,
X.
, and
Huang
,
C.
,
2014
, “
Complete Kinematic Analysis of Single-Loop Multiple-Mode 7-Link Mechanisms Based on Bennett and Overconstrained RPRP Mechanisms
,”
Mech. Mach. Theory
,
73
, pp.
117
129
.
24.
Zhang
,
K.
, and
Dai
,
J.
,
2016
, “
Geometric Constraints and Motion Branch Variations for Reconfiguration of Single-Loop Linkages With Mobility One
,”
Mech. Mach. Theory
,
106
, pp.
16
29
.
25.
He
,
X.
,
Kong
,
X.
,
Hao
,
G.
, and
Ritchie
,
J.
,
2016
, “Design and Analysis of a New 7R Single-Loop Mechanism With 4R, 6R and 7R Operation Modes,”
Advances in Reconfigurable Mechanisms and Robots II
,
Springer
,
Cham
, pp.
27
37
.
26.
Li
,
C.
,
Angeles
,
J.
,
Guo
,
H.
,
Tang
,
D.
,
Liu
,
R.
,
Qin
,
Z.
, and
Xiao
,
H.
,
2021
, “
On the Actuation Modes of a Multiloop Mechanism for Space Applications
,”
IEEE/ASME Trans. Mechatron.
,
27
(
5
), pp.
2818
2828
.
27.
Husty
,
M. L.
,
Pfurner
,
M.
,
Schröcker
,
H. P.
, and
Brunnthaler
,
K.
,
2007
, “
Algebraic Methods in Mechanism Analysis and Synthesis
,”
Robotica
,
25
(
6
), pp.
661
675
.
28.
Zhao
,
J.
,
Feng
,
Z.
,
Zhou
,
K.
, and
Dong
,
J.
,
2005
, “
Analysis of the Singularity of Spatial Parallel Manipulator With Terminal Constraints
,”
Mech. Mach. Theory
,
40
(
3
), pp.
275
284
.
29.
Chen
,
Y.
,
Feng
,
J.
, and
Sun
,
Q.
,
2018
, “
Lower-Order Symmetric Mechanism Modes and Bifurcation Behavior of Deployable Bar Structures With Cyclic Symmetry
,”
Int. J. Solids Struct.
,
139
, pp.
1
14
.
30.
Zhang
,
K.
, and
Dai
,
J.
,
2014
, “
A Kirigami-Inspired 8R Linkage and Its Evolved Overconstrained 6R Linkages With the Rotational Symmetry of Order Two
,”
ASME J. Mech. Rob.
,
6
(
2
), p.
021007
.
31.
Ma
,
X.
,
Zhang
,
K.
, and
Dai
,
J.
,
2018
, “
Novel Spherical-Planar and Bennett-Spherical 6R Metamorphic Linkages With Reconfigurable Motion Branches
,”
Mech. Mach. Theory
,
128
, pp.
628
647
.
32.
Wei
,
G.
, and
Dai
,
J.
,
2014
, “
Origami-Inspired Integrated Planar-Spherical Overconstrained Mechanisms
,”
ASME J. Mech. Des.
,
136
(
5
), p.
051003
.
33.
Zhang
,
K.
,
Qiu
,
C.
, and
Dai
,
J.
,
2016
, “
An Extensible Continuum Robot With Integrated Origami Parallel Modules
,”
ASME J. Mech. Rob.
,
8
(
3
), p.
031010
.
34.
Rodriguez Leal
,
E.
, and
Dai
,
J.
,
2007
, “
From Origami to a New Class of Centralized 3-DOF Parallel Mechanisms
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Las Vegas, NV
, Sept. 4–7, Vol. 48094, pp.
1183
1193
.
35.
Zhang
,
K.
, and
Dai
,
J.
,
2016
, “
Reconfiguration of the Plane-Symmetric Double-Spherical 6R Linkage With Bifurcation and Trifurcation
,”
Proc. Inst. Mech. Eng. Part C
,
230
(
3
), pp.
473
482
.
36.
Ye
,
W.
,
Chai
,
X.
, and
Zhang
,
K.
,
2020
, “
Kinematic Modeling and Optimization of a New Reconfigurable Parallel Mechanism
,”
Mech. Mach. Theory
,
149
, p.
103850
.
37.
Ball
,
R. S.
,
1900
,
A Treatise on the Theory of Screws
,
Cambridge University
,
Cambridge
.
You do not currently have access to this content.