Abstract

Life-cycle reliability analysis can effectively estimate and present the changes in the state of safety for structures under dynamic uncertainties during their lifecycle. The first-crossing approach is an efficient way to evaluate time-variant reliability-based on the probabilistic characteristics of the first-crossing time point (FCTP). However, the FCTP model has a number of critical challenges, such as computational accuracy. This paper proposes an adaptive first-crossing approach for the time-varying reliability of structures over their whole lifecycle, which can provide a tool for cycle-life reliability analysis and design. The response surface of FCTP regarding input variables is first estimated by performing support vector regression. Furthermore, the adaptive learning algorithm for training support vector regression is developed by integrating the uniform design and the central moments of the surrogate model. Then, the convergence condition, which combines the raw moments and entropy of the first-crossing probability distribution function (PDF), is constructed to build the optimal first-crossing surrogate model. Finally, the first-crossing PDF is solved using the adaptive kernel density estimation to obtain the time-variant reliability trend during the whole lifecycle. Examples are demonstrated to specify the proposed method in applications.

References

1.
Meng
,
D.
,
Xie
,
T.
,
Wu
,
P.
,
He
,
C.
,
Hu
,
Z.
, and
Lv
,
Z.
,
2021
, “
An Uncertainty-Based Design Optimization Strategy With Random and Interval Variables for Multidisciplinary Engineering Systems
,”
Structures
,
32
, pp.
997
1004
.
2.
Hu
,
Z.
,
Mansour
,
R.
,
Olsson
,
M.
, and
Du
,
X.
,
2021
, “
Second-Order Reliability Methods: A Review and Comparative Study
,”
Struct. Multidisc. Optim.
,
64
(
6
), pp.
3233
3263
.
3.
Zhu
,
S.-P.
,
Keshtegar
,
B.
,
Ben Seghier
,
M. E. A.
,
Zio
,
E.
, and
Taylan
,
O.
,
2022
, “
Hybrid and Enhanced PSO: Novel First Order Reliability Method-Based Hybrid Intelligent Approaches
,”
Comput. Meth. Appl. Mech. Eng.
,
393
, p.
114730
.
4.
Wu
,
H.
,
Zhu
,
Z.
, and
Du
,
X.
,
2020
, “
System Reliability Analysis With Autocorrelated Kriging Predictions
,”
ASME J. Mech. Des.
,
142
(
10
), p.
101702
.
5.
Echard
,
B.
,
Gayton
,
N.
, and
Lemaire
,
M.
,
2011
, “
AK-MCS: An Active Learning Reliability Method Combining Kriging and Monte Carlo Simulation
,”
Struct. Saf.
,
33
(
2
), pp.
145
154
.
6.
Bichon
,
B. J.
,
McFarland
,
J. M.
, and
Mahadevan
,
S.
,
2011
, “
Efficient Surrogate Models for Reliability Analysis of Systems With Multiple Failure Modes
,”
Reliab. Eng. Syst. Saf.
,
96
(
10
), pp.
1386
1395
.
7.
Xiao
,
N.-C.
,
Yuan
,
K.
, and
Zhan
,
H.
,
2022
, “
System Reliability Analysis Based on Dependent Kriging Predictions and Parallel Learning Strategy
,”
Reliab. Eng. Syst. Saf.
,
218
, p.
108083
.
8.
Zhang
,
D.
,
Zhang
,
N.
,
Ye
,
N.
,
Fang
,
J.
, and
Han
,
X.
,
2021
, “
Hybrid Learning Algorithm of Radial Basis Function Networks for Reliability Analysis
,”
IEEE Trans. Reliab.
,
70
(
3
), pp.
887
900
.
9.
Saraygord Afshari
,
S.
,
Enayatollahi
,
F.
,
Xu
,
X.
, and
Liang
,
X.
,
2022
, “
Machine Learning-Based Methods in Structural Reliability Analysis: A Review
,”
Reliab. Eng. Syst. Saf.
,
219
, p.
108223
.
10.
Wang
,
C.
,
Zhang
,
H.
, and
Li
,
Q.
,
2019
, “
Moment-Based Evaluation of Structural Reliability
,”
Reliab. Eng. Syst. Saf.
,
181
, pp.
38
45
.
11.
Ding
,
C.
, and
Xu
,
J.
,
2021
, “
An Improved Adaptive Bivariate Dimension-Reduction Method for Efficient Statistical Moment and Reliability Evaluations
,”
Mech. Syst. Signal Process.
,
149
, p.
107309
.
12.
Meng
,
Z.
,
Pang
,
Y.
, and
Zhou
,
H.
,
2021
, “
An Augmented Weighted Simulation Method for High-Dimensional Reliability Analysis
,”
Struct. Saf.
,
93
, p.
102117
.
13.
Yu
,
S.
,
Wang
,
Z.
, and
Li
,
Y.
,
2022
, “
Time and Space-Variant System Reliability Analysis Through Adaptive Kriging and Weighted Sampling
,”
Mech. Syst. Signal Process.
,
166
, p.
108443
.
14.
Song
,
Z.
,
Zhang
,
H.
,
Zhang
,
L.
,
Liu
,
Z.
, and
Zhu
,
P.
,
2022
, “
An Estimation Variance Reduction-Guided Adaptive Kriging Method for Efficient Time-Variant Structural Reliability Analysis
,”
Mech. Syst. Signal Process.
,
178
, p.
109322
.
15.
Jiang
,
C.
,
Wei
,
X. P.
,
Huang
,
Z. L.
, and
Liu
,
J.
,
2017
, “
An Outcrossing Rate Model and Its Efficient Calculation for Time-Dependent System Reliability Analysis
,”
ASME J. Mech. Des.
,
139
(
4
), p.
041402
.
16.
Sudret
,
B.
,
2008
, “
Analytical Derivation of the Outcrossing Rate in Time-Variant Reliability Problems
,”
Struct. Infrastruct. Eng.
,
4
(
5
), pp.
353
362
.
17.
Jiang
,
C.
,
Huang
,
X. P.
,
Han
,
X.
, and
Zhang
,
D. Q.
,
2014
, “
A Time-Variant Reliability Analysis Method Based on Stochastic Process Discretization
,”
ASME J. Mech. Des.
,
136
(
9
), p.
091009
.
18.
Jiang
,
C.
,
Wei
,
X. P.
,
Wu
,
B.
, and
Huang
,
Z. L.
,
2018
, “
An Improved TRPD Method for Time-Variant Reliability Analysis
,”
Struct. Multidisc. Optim.
,
58
(
5
), pp.
1935
1946
.
19.
Zhang
,
Y.
,
Gong
,
C.
, and
Li
,
C.
,
2021
, “
Efficient Time-Variant Reliability Analysis Through Approximating the Most Probable Point Trajectory
,”
Struct. Multidisc. Optim.
,
63
(
1
), pp.
289
309
.
20.
Zhang
,
D.
,
Zhou
,
P.
,
Jiang
,
C.
,
Yang
,
M.
,
Han
,
X.
, and
Li
,
Q.
,
2021
, “
A Stochastic Process Discretization Method Combing Active Learning Kriging Model for Efficient Time-Variant Reliability Analysis
,”
Comput. Meth. Appl. Mech. Eng.
,
384
, p.
113990
.
21.
Meng
,
Z.
,
Zhao
,
J.
, and
Jiang
,
C.
,
2021
, “
An Efficient Semi-Analytical Extreme Value Method for Time-Variant Reliability Analysis
,”
Struct. Multidisc. Optim.
,
64
(
3
), pp.
1469
1480
.
22.
Wang
,
Z.
, and
Chen
,
W.
,
2016
, “
Time-Variant Reliability Assessment Through Equivalent Stochastic Process Transformation
,”
Reliab. Eng. Syst. Saf.
,
152
, pp.
166
175
.
23.
Du
,
W.
,
Luo
,
Y.
, and
Wang
,
Y.
,
2019
, “
Time-Variant Reliability Analysis Using the Parallel Subset Simulation
,”
Reliab. Eng. Syst. Saf.
,
182
, pp.
250
257
.
24.
Chakraborty
,
S.
, and
Tesfamariam
,
S.
,
2021
, “
Subset Simulation Based Approach for Space-Time-Dependent System Reliability Analysis of Corroding Pipelines
,”
Struct. Saf.
,
90
, p.
102073
.
25.
Yuan
,
X.
,
Liu
,
S.
,
Faes
,
M.
,
Valdebenito
,
M. A.
, and
Beer
,
M.
,
2021
, “
An Efficient Importance Sampling Approach for Reliability Analysis of Time-Variant Structures Subject to Time-Dependent Stochastic Load
,”
Mech. Syst. Signal Process.
,
159
, p.
107699
.
26.
Zhao
,
Z.
,
Lu
,
Z.-H.
, and
Zhao
,
Y.-G.
,
2022
, “
Time-Variant Reliability Analysis Using Moment-Based Equivalent Gaussian Process and Importance Sampling
,”
Struct. Multidisc. Optim.
,
65
(
2
), p.
73
.
27.
Yang
,
W.
,
Zhang
,
B.
,
Wang
,
W.
, and
Li
,
C.-Q.
,
2023
, “
Time-Dependent Structural Reliability Under Nonstationary and Non-Gaussian Processes
,”
Struct. Saf.
,
100
, p.
102286
.
28.
Wang
,
Z.
, and
Wang
,
P.
,
2013
, “
A New Approach for Reliability Analysis With Time-Variant Performance Characteristics
,”
Reliab. Eng. Syst. Saf.
,
115
, pp.
70
81
.
29.
Hu
,
Z.
, and
Du
,
X.
,
2015
, “
Mixed Efficient Global Optimization for Time-Dependent Reliability Analysis
,”
ASME J. Mech. Des.
,
137
(
5
), p.
051401
.
30.
Qian
,
H.-M.
,
Huang
,
H.-Z.
, and
Li
,
Y.-F.
,
2019
, “
A Novel Single-Loop Procedure for Time-Variant Reliability Analysis Based on Kriging Model
,”
Appl. Math. Model.
,
75
, pp.
735
748
.
31.
Hu
,
Z.
, and
Mahadevan
,
S.
,
2016
, “
A Single-Loop Kriging Surrogate Modeling for Time-Dependent Reliability Analysis
,”
ASME J. Mech. Des.
,
138
(
6
), p.
061406
.
32.
Jiang
,
C.
,
Qiu
,
H.
,
Gao
,
L.
,
Wang
,
D.
,
Yang
,
Z.
, and
Chen
,
L.
,
2020
, “
Real-Time Estimation Error-Guided Active Learning Kriging Method for Time-Dependent Reliability Analysis
,”
Appl. Math. Model.
,
77
, pp.
82
98
.
33.
Li
,
M.
, and
Wang
,
Z.
,
2021
, “
An LSTM-Based Ensemble Learning Approach for Time-Dependent Reliability Analysis
,”
ASME J. Mech. Des.
,
143
(
3
), p.
031702
.
34.
Wang
,
D.
,
Qiu
,
H.
,
Gao
,
L.
, and
Jiang
,
C.
,
2021
, “
A Single-Loop Kriging Coupled With Subset Simulation for Time-Dependent Reliability Analysis
,”
Reliab. Eng. Syst. Saf.
,
216
, p.
107931
.
35.
Yun
,
W.
,
Lu
,
Z.
, and
Wang
,
L.
,
2022
, “
A Coupled Adaptive Radial-Based Importance Sampling and Single-Loop Kriging Surrogate Model for Time-Dependent Reliability Analysis
,”
Struct. Multidisc. Optim.
,
65
(
5
), p.
139
.
36.
Singh
,
A.
, and
Mourelatos
,
Z. P.
,
2010
, “
On the Time-Dependent Reliability of Non-Monotonic, Non-Repairable Systems
,”
SAE Int. J. Mater. Manuf.
,
3
(
1
), pp.
425
444
.
37.
Wu
,
H.
,
Hu
,
Z.
, and
Du
,
X.
,
2021
, “
Time-Dependent System Reliability Analysis With Second-Order Reliability Method
,”
ASME J. Mech. Des.
,
143
(
3
), p.
031101
.
38.
Gong
,
C.
, and
Frangopol
,
D. M.
,
2019
, “
An Efficient Time-Dependent Reliability Method
,”
Struct. Saf.
,
81
, p.
101864
.
39.
Ji
,
Y.
,
Liu
,
H.
,
Xiao
,
N.-C.
, and
Zhan
,
H.
,
2023
, “
An Efficient Method for Time-Dependent Reliability Problems With High-Dimensional Outputs Based on Adaptive Dimension Reduction Strategy and Surrogate Model
,”
Eng. Struct.
,
276
, p.
115393
.
40.
Rice
,
S. O.
,
1944
, “
Mathematical Analysis of Random Noise
,”
Bell Syst. Tech. J.
,
23
(
3
), pp.
282
332
.
41.
Andrieu-Renaud
,
C.
,
Sudret
,
B.
, and
Lemaire
,
M.
,
2004
, “
The PHI2 Method: A Way to Compute Time-Variant Reliability
,”
Reliab. Eng. Syst. Saf.
,
84
(
1
), pp.
75
86
.
42.
Hu
,
Z.
, and
Du
,
X.
,
2013
, “
Time-Dependent Reliability Analysis With Joint Upcrossing Rates
,”
Struct. Multidisc. Optim.
,
48
(
5
), pp.
893
907
.
43.
Yu
,
S.
,
Zhang
,
Y.
,
Li
,
Y.
, and
Wang
,
Z.
,
2020
, “
Time-Variant Reliability Analysis Via Approximation of the First-Crossing PDF
,”
Struct. Multidisc. Optim.
,
62
(
5
), pp.
2653
2667
.
44.
Zhang
,
H.
,
Song
,
L.-K.
, and
Bai
,
G.-C.
,
2022
, “
Active Kriging-Based Adaptive Importance Sampling for Reliability and Sensitivity Analyses of Stator Blade Regulator
,”
Comput. Model. Eng. Sci.
,
143
(
3
), pp.
1871
1897
.
45.
Fang
,
K.-T.
,
Lin
,
D. K. J.
,
Winker
,
P.
, and
Zhang
,
Y.
,
2000
, “
Uniform Design: Theory and Application
,”
Technometrics
,
42
(
3
), pp.
237
248
.
46.
Luo
,
C.
,
Keshtegar
,
B.
,
Zhu
,
S.-P.
, and
Niu
,
X.
,
2022
, “
EMCS-SVR: Hybrid Efficient and Accurate Enhanced Simulation Approach Coupled With Adaptive SVR for Structural Reliability Analysis
,”
Comput. Meth. Appl. Mech. Eng.
,
400
, p.
115499
.
47.
,
Q.
,
Xiao
,
Z.-P.
,
Ji
,
J.
,
Zheng
,
J.
, and
Shang
,
Y.-Q.
,
2017
, “
Moving Least Squares Method for Reliability Assessment of Rock Tunnel Excavation Considering Ground-Support Interaction
,”
Comput. Geotech.
,
84
, pp.
88
100
.
48.
Shi
,
Y.
,
Lu
,
Z.
,
Zhang
,
K.
, and
Wei
,
Y.
,
2017
, “
Reliability Analysis for Structures With Multiple Temporal and Spatial Parameters Based on the Effective First-Crossing Point
,”
ASME J. Mech. Des.
,
139
(
12
), p.
121403
.
49.
Zhao
,
Z.
,
Lu
,
Z.-H.
, and
Zhao
,
Y.-G.
,
2022
, “
An Efficient Extreme Value Moment Method Combining Adaptive Kriging Model for Time-Variant Imprecise Reliability Analysis
,”
Mech. Syst. Signal Process.
,
171
, p.
108905
.
50.
Dang
,
C.
, and
Xu
,
J.
,
2020
, “
A Mixture Distribution With Fractional Moments for Efficient Seismic Reliability Analysis of Nonlinear Structures
,”
Eng. Struct.
,
208
, p.
109912
.
51.
Shields
,
M. D.
, and
Zhang
,
J.
,
2016
, “
The Generalization of Latin Hypercube Sampling
,”
Reliab. Eng. Syst. Saf.
,
148
, pp.
96
108
.
52.
Helton
,
J. C.
, and
Davis
,
F. J.
,
2003
, “
Latin Hypercube Sampling and the Propagation of Uncertainty in Analyses of Complex Systems
,”
Reliab. Eng. Syst. Saf.
,
81
(
1
), pp.
23
69
.
53.
Zhang
,
Z.
,
Wang
,
J.
,
Jiang
,
C.
, and
Huang
,
Z. L.
,
2019
, “
A New Uncertainty Propagation Method Considering Multimodal Probability Density Functions
,”
Struct. Multidisc. Optim.
,
60
(
5
), pp.
1983
1999
.
54.
Jia
,
G.
,
Tabandeh
,
A.
, and
Gardoni
,
P.
,
2021
, “
A Density Extrapolation Approach to Estimate Failure Probabilities
,”
Struct. Saf.
,
93
, p.
102128
.
55.
Dugan
,
R. C.
, and
McDermott
,
T. E.
,
2011
, “
An Open Source Platform for Collaborating on Smart Grid Research
,”
2011 IEEE Power and Energy Society General Meeting
,
Detroit, MI
,
July 24–28
, pp.
1
7
.
You do not currently have access to this content.