Abstract

The rapid evolution of generative design through artificial intelligence has opened new avenues for innovative product styling. Integrating this efficient generative technology with established professional theories presents a novel challenge in contemporary international design research. In response to this challenge, this article introduces a pioneering and collaborative approach for the swift generation of automobile styling designs. The primary objective is to investigate an intelligent generation method that incorporates analogical reasoning and Stable Diffusion to support industrial designers in innovating product styling. This study scrutinizes traditional analogical reasoning design alongside the intelligent analogical reasoning design proposed herein, elucidating the distinctions through multidimensional comparisons using illustrative examples. The proposed methodological framework encompasses several key steps. Initially, a dataset comprising branded automobile images is meticulously constructed. Subsequently, an exclusive style model is trained leveraging Stable Diffusion techniques, coupled with advanced computer graphics and machine learning methodologies. Following this, design requirements are inputted, facilitating intelligent analogical reasoning design across multiple spatial dimensions to yield diverse and innovative automobile styling solutions. Finally, eye-tracking experiments are conducted to quantitatively compare the traditional analogical reasoning design approach with the Stable Diffusion-based analogical reasoning design method. The results substantiate that the latter effectively generates innovative and diversified automobile design solutions. This research contributes to enhancing the quality of automobile styling design, optimizing the design efficiency of enterprises, and catalyzing innovation in the automobile styling design process.

References

1.
Aziz
,
M. S.
,
2016
, “
Biomimicry as an Approach for Bio-Inspired Structure With the Aid of Computation
,”
Alexandria Eng. J.
,
55
(
1
), pp.
707
714
.
2.
Du
,
W.
,
2020
, “
Research on Bionic Design of Automobile Styling
,”
Proceedings of the 2020 International Conference on Intelligent Design (ICID)
,
Xi’an, China
,
Dec. 11–13
, pp.
278
281
.
3.
Bian
,
Z.
,
Luo
,
S.
,
Zheng
,
F.
,
Wang
,
L.
, and
Shan
,
P.
,
2021
, “
Semantic Reasoning of Product Biologically Inspired Design Based on BERT
,”
Appl. Sci.
,
11
(
24
), p.
12082
.
4.
Deng
,
Z.
,
Lv
,
J.
,
Liu
,
X.
, and
Hou
,
Y.
,
2023
, “
Bionic Design Model for Co-Creative Product Innovation Based on Deep Generative and BID
,”
Int. J. Comput. Intell. Syst.
,
16
(
1
), p.
8
.
5.
Isola
,
P.
,
Zhu
,
J.-Y.
,
Zhou
,
T.
, and
Efros
,
A. A.
,
2017
, “
Image-to-Image Translation With Conditional Adversarial Networks
,”
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
,
Honolulu, HI
,
July 16–21
, pp.
1125
1134
.
6.
Girin
,
L.
,
Leglaive
,
S.
,
Bie
,
X.
,
Diard
,
J.
,
Hueber
,
T.
, and
Alameda-Pineda
,
X.
,
2020
, “Dynamical Variational Autoencoders: A Comprehensive Review,”arXiv:2008.12595.
7.
Zivot
,
Eric
, and
Wang
,
Jia hui
,
2006
, “Vector Autoregressive Models for Multivariate Time Series,”
Modeling Financial Time Series With S-PLUS®
,
Springer
, pp.
385
429
.
8.
Zhou
,
A.
,
Liu
,
H.
,
Zhang
,
S.
, and
Ouyang
,
J.
,
2021
, “
Evaluation and Design Method for Product Form Aesthetics Based on Deep Learning
,”
IEEE Access
,
9
, pp.
108992
109003
.
9.
Shijian
,
L.
,
Yufei
,
Z.
,
Ze
,
B.
, and
Ping
,
S.
,
2018
, “
Research Status and Progress of Bionic Design of Product Shapes
,”
J. Mech. Eng.
,
54
(
21
), pp.
138
155
.
10.
Fang
,
F.
,
Yuan
,
G. H.
,
Fei
,
S.
,
Qing
,
H. L.
, and
Zhu
,
L. M.
,
2014
, “
Research on the Application of Cultural Bionics in Automobile Styling Design
,”
Mech. Des.
,
31
(
11
), pp.
114
117
.
11.
Wang
,
D.
,
Fu
,
J.
, and
Qian
,
Y.
,
2022
, “
Investigation on Research Model of Product Design Integrated With Big Data Technology
,”
Proceedings of the International Conference on Human-Computer Interaction
,
Gothenburg, Sweden
,
June 26–July 1
, Springer, pp.
312
323
.
12.
Zhang
,
F.
,
2022
, “
Design and Implementation of Industrial Design and Transformation System Based on Artificial Intelligence Technology
,”
Math. Probl. Eng.
,
2022
, pp.
1
9
.
13.
Jiang
,
S.
,
Hu
,
J.
,
Wood
,
K. L.
, and
Luo
,
J.
,
2022
, “
Data-Driven Design-by-Analogy: State-of-the-Art and Future Directions
,”
ASME J. Mech. Des.
,
144
(
2
), p.
020801
.
14.
Goel
,
A. K.
,
1997
, “
Design, Analogy, and Creativity
,”
IEEE Expert
,
12
(
3
), pp.
62
70
.
15.
Nishui
,
C.
,
Huijun
,
Z.
,
Shigang
,
W.
, and
Yue
,
K. J.
,
1997
, “
Analogical Reasoning in Intelligent Conceptual Design
,”
J. Shanghai Jiao Tong Univ.
,
31
(
3
), pp.
70
73
.
16.
Qian
,
L.
, and
Gero
,
J.
,
1992
, “A Design Support System Using Analogy,”
Artificial Intelligence in Design’92
,
Springer
,
New York
, pp.
795
813
.
17.
Han
,
J.
,
Shi
,
F.
,
Chen
,
L.
, and
Childs
,
P. R.
,
2018
, “
The Combinator – A Computer-Based Tool for Creative Idea Generation Based on a Simulation Approach
,”
Des. Sci.
,
4
, p.
e11
.
18.
Chakrabarti
,
A.
,
Siddharth
,
L.
,
Dinakar
,
M.
,
Panda
,
M.
,
Palegar
,
N.
, and
Keshwani
,
S.
,
2017
, “
Idea Inspire 3.0 – A Tool for Analogical Design
,”
Proceedings of the Research Into Design for Communities, Volume 2: Proceedings of ICoRD 2017
,
Beijing, China
,
Sept. 7–10
, Springer, pp.
475
485
.
19.
Song
,
H.
,
Evans
,
J.
, and
Fu
,
K.
,
2020
, “
An Exploration-Based Approach to Computationally Supported Design-by-Analogy Using D3
,”
AI EDAM
,
34
(
4
), pp.
444
457
.
20.
Wu
,
Y.
,
Ma
,
L.
,
Yuan
,
X.
, and
Li
,
Q.
,
2023
, “
Human–Machine Hybrid Intelligence for the Generation of Car Frontal Forms
,”
Adv. Eng. Inform.
,
55
, p.
101906
.
21.
Hyun
,
K. H.
, and
Lee
,
J.-H.
,
2018
, “
Balancing Homogeneity and Heterogeneity in Design Exploration by Synthesizing Novel Design Alternatives Based on Genetic Algorithm and Strategic Styling Decision
,”
Adv. Eng. Inform.
,
38
, pp.
113
128
.
22.
Waki
,
M.
,
2021
, “
Quantification of User’s Preference on Product Shapes Using Automobile as a Case Study
,”
Adv. Transdiscipl. Eng.
,
16
, pp.
547
555
.
23.
Piya
,
C.
,
Chandrasegaran
,
S.
,
Elmqvist
,
N.
, and
Ramani
,
K.
,
2017
, “
CO-3Deator: A Team-First Collaborative 3D Design Ideation Tool
,”
Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems
,
Vancouver, Canada
,
July 9–14
, pp.
6581
6592
.
24.
Zhao
,
A.
,
Xu
,
J.
,
Konaković-Luković
,
M.
,
Hughes
,
J.
,
Spielberg
,
A.
,
Rus
,
D.
, and
Matusik
,
W.
,
2020
, “
Robogrammar: Graph Grammar for Terrain-Optimized Robot Design
,”
ACM Trans. Graphics
,
39
(
6
), pp.
1
16
.
25.
Cluzel
,
F.
,
Yannou
,
B.
, and
Dihlmann
,
M.
,
2012
, “
Using Evolutionary Design to Interactively Sketch Car Silhouettes and Stimulate Designer’s Creativity
,”
Eng. Appl. Artif. Intell.
,
25
(
7
), pp.
1413
1424
.
26.
Zhenggen
,
D.
,
Jian
,
L.
,
Xiang
,
L.
,
Yukang
,
H.
, and
Shuai
,
W.
,
2023
, “
Research on StyleGAN-Based Sketch Generation Method for Product Design Effect Graphics
,”
Packag. Eng. Art Ed.
,
44
(
6
), pp.
188
195
.
27.
Albergo
,
M. S.
,
Kanwar
,
G.
, and
Shanahan
,
P. E.
,
2019
, “
Flow-Based Generative Models for Markov Chain Monte Carlo in Lattice Field Theory
,”
Phys. Rev. D
,
100
(
3
), p.
034515
.
28.
Croitoru
,
F.-A.
,
Hondru
,
V.
,
Ionescu
,
R. T.
, and
Shah
,
M.
,
2023
, “
Diffusion Models in Vision: A Survey
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
45
(
9
), pp.
10850
10869
.
29.
Bond-Taylor
,
S.
,
Leach
,
A.
,
Long
,
Y.
, and
Willcocks
,
C. G.
,
2021
, “
Deep Generative Modelling: A Comparative Review of Vaes, Gans, Normalizing Flows, Energy-Based and Autoregressive Models
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
44
(
11
), pp.
7327
7347
.
30.
Han
,
A.
, and
Cai
,
Z.
,
2023
, “
Design Implications of Generative AI Systems for Visual Storytelling for Young Learners
,”
Proceedings of the 22nd Annual ACM Interaction Design and Children Conference
,
Wuhan, China
,
July 28–30
, pp.
470
474
.
31.
Wang
,
D.
,
Ma
,
C.
, and
Sun
,
S.
,
2023
, “
Novel Paintings From the Latent Diffusion Model Through Transfer Learning
,”
Appl. Sci.
,
13
(
18
), p.
10379
.
32.
Huang
,
N.
,
Tang
,
F.
,
Dong
,
W.
, and
Xu
,
C.
,
2022
, “
Draw Your Art Dream: Diverse Digital Art Synthesis With Multimodal Guided Diffusion
,”
Proceedings of the 30th ACM International Conference on Multimedia
,
Lisbon, Portugal
,
Oct. 10–14
, pp.
1085
1094
.
33.
Li
,
B.
,
Wang
,
Y.
,
Wang
,
K.
, and
Yang
,
J.
,
2019
, “
Application of CNN Deep Learning in Product Design Evaluation
,”
Proceedings of the Advanced Manufacturing and Automation VIII 8
,
Changzhou, China
,
Sept. 25–26
, Springer, pp.
517
526
.
34.
Zhu
,
S.
,
Qi
,
J.
,
Hu
,
J.
, and
Hao
,
S.
,
2022
, “
A New Approach for Product Evaluation Based on Integration of EEG and Eye-Tracking
,”
Adv. Eng. Inform.
,
52
, p.
101601
.
35.
Köhler
,
M.
,
Falk
,
B.
, and
Schmitt
,
R.
,
2015
, “
Applying Eye-Tracking in Kansei Engineering Methodology for Design Evaluations in Product Development
,”
Proceedings of the International Conference on Kansei Engineering and Emotion Research
,
Tokyo, Japan
,
May 8–10
, pp.
837
852
.
36.
Luan
,
J.
,
Yao
,
Z.
,
Zhao
,
F.
, and
Liu
,
H.
,
2016
, “
Search Product and Experience Product Online Reviews: An Eye-Tracking Study on Consumers’ Review Search Behavior
,”
Comput. Hum. Behav.
,
65
, pp.
420
430
.
37.
Wang
,
S.
,
Chen
,
L.
,
Jiang
,
J.
,
Xue
,
B.
,
Kong
,
L.
, and
Wu
,
C.
,
2024
, “LoRA Meets Dropout Under a Unified Framework,” arXiv:2403.00812.
38.
Bluntzer
,
J.-B.
,
Ostrosi
,
E.
, and
Sagot
,
J.-C.
,
2015
, “
Styling of Cars: Is There a Relationship Between the Style of Cars and the Culture Identity of a Specific Country?
,”
Proc. Inst. Mech. Eng. Part D J. Automob. Eng.
,
229
(
1
), pp.
38
51
.
39.
Yang
,
L.
,
Zhang
,
Z.
,
Song
,
Y.
,
Hong
,
S.
,
Xu
,
R.
,
Zhao
,
Y.
,
Zhang
,
W.
,
Cui
,
B.
, and
Yang
,
M.-H.
,
2023
, “
Diffusion Models: A Comprehensive Survey of Methods and Applications
,”
ACM Comput. Surv.
,
56
(
4
), pp.
1
39
.
40.
Ruiz
,
N.
,
Li
,
Y.
,
Jampani
,
V.
,
Pritch
,
Y.
,
Rubinstein
,
M.
, and
Aberman
,
K.
,
2023
, “
Dreambooth: Fine Tuning Text-to-Image Diffusion Models for Subject-Driven Generation
,”
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
,
Vancouver, Canada
,
June 18–22
, pp.
22500
22510
.
41.
Hu
,
E. J.
,
Shen
,
Y.
,
Wallis
,
P.
,
Allen-Zhu
,
Z.
,
Li
,
Y.
,
Wang
,
S.
,
Wang
,
L.
, and
Chen
,
W.
,
2021
, “Lora: Low-Rank Adaptation of Large Language Models,” arXiv:2106.09685.
42.
Daras
,
G.
, and
Dimakis
,
A. G.
,
2022
, “Multiresolution Textual Inversion,” arXiv:2211.17115.
43.
Ha
,
D.
,
Dai
,
A.
, and
Le
,
Q. V.
,
2016
, “Hypernetworks,” arXiv:1609.09106.
44.
Chang
,
Z.
,
Koulieris
,
G. A.
, and
Shum
,
H. P.
,
2023
, “On the Design Fundamentals of Diffusion Models: A Survey,” arXiv:2306.04542.
45.
Guo
,
Z.
,
Liu
,
J.
,
Wang
,
Y.
,
Chen
,
M.
,
Wang
,
D.
,
Xu
,
D.
, and
Cheng
,
J.
,
2023
, “Diffusion Models in Bioinformatics: A New Wave of Deep Learning Revolution in Action,” arXiv:2302.10907.
46.
Zhang
,
L.
,
Rao
,
A.
, and
Agrawala
,
M.
,
2023
, “
Adding Conditional Control to Text-to-Image Diffusion Models
,”
Proceedings of the IEEE/CVF International Conference on Computer Vision
,
Paris, France
,
Oct. 2–8
, pp.
3836
3847
.
47.
Liu
,
Z.
,
Yin
,
Y.
,
Xue
,
W.
,
Guo
,
R.
, and
Cheng
,
L.
,
2023
, “
A Review of Conditionally Guided Image Generation Based on Diffusion Modeling
,”
J. Zhejiang Univ. (Sci. Ed.)
,
50
(
06
), pp.
651
667
.
48.
Lialin
,
V.
,
Shivagunde
,
N.
,
Muckatira
,
S.
, and
Rumshisky
,
A.
,
2023
, “ReLoRA: High-Rank Training Through Low-Rank Updates,” arXiv:2307.05695.
49.
Tu
,
H.
,
Wang
,
W.
,
Cheng
,
J.
,
Li
,
G.
, and
Wu
,
F.
,
2024
, “
A Survey of Image Translation Based on Conditional Generative Adversarial Networks
,”
J. Comput. Aided Des. Graphics
,
36
(
01
), pp.
14
32
.
50.
Kawagoe
,
T.
,
Kihara
,
K.
, and
Teramoto
,
W.
,
2020
, “
Eastern Observers Cannot Inhibit Their Gaze to Eye and Nose Regions in Face Perception
,”
Conscious. Cogn.
,
79
, p.
102881
.
51.
Li
,
X.
,
Chen
,
W.
,
Chen
,
W.
,
Kang
,
Y.
,
Jiao
,
Y.
, and
Jiang
,
S.
,
2024
, “
A Study on Situational Awareness Recognition for Pilots Based on Eye Tracking Technology
,”
J. Saf. Environ.
,
24
(
04
), pp.
1485
1497
.
52.
Zhang
,
C.
,
Dai
,
Q.
,
Yao
,
X.
,
Long
,
F.
, and
Yang
,
L.
,
2023
, “
Research on the Design Elements of Ming Dynasty Hanfu Based on Eye Tracking Technology
,”
Silks
,
60
(
09
), pp.
120
127
.
53.
Zhou
,
Q.
,
Huang
,
Y.
, and
Xu
,
Y.
,
2024
, “
Application of Eye-Tracking Technology in the Disinformation Screening Process
,”
Libr. Forum
,
44
(
08
), pp.
44
55
.
54.
Tan
,
Z.-T.
,
Zhu
,
Y.
, and
Zhao
,
J.-H.
,
2018
, “
Research on User's Perceptual Preference of Automobile Styling
,”
Proceedings of the Advances in Affective and Pleasurable Design: Proceedings of the AHFE 2018 International Conference on Affective and Pleasurable Design
,
Orlando, FL
,
July 21–25
, Springer, pp.
41
52
.
You do not currently have access to this content.