In this paper, the unique form of the screw based Jacobian is suggested for lower mobility parallel manipulators. Utilizing the concept of the reciprocal Jacobian, the forward statics relation for each of the serial kinematic chains of a parallel manipulator can be first obtained and then used to derive both the forward statics and the inverse velocity relations of the manipulator. The screw based Jacobian of a parallel manipulator can be formulated from the inverse velocity relation in such a way that it consists of the reciprocal Jacobians of the serial kinematic chains. Since any reciprocal Jacobian is unique to the corresponding serial chain, the suggested form of the screw based Jacobian is also determined uniquely to the lower mobility parallel manipulator. Two examples are given to illustrate the proposed method, one for the 3DOF parallel manipulator with three identical prismatic-revolute-spherical joints-serial chains and the other for the 4DOF parallel manipulator with nonidentical serial chains (two spherical-prismatic-spherical- and one revolute-revolute-prismatic-revolute joints-serial chains).

1.
Yoshikawa
,
T.
, 1985, “
Manipulability of Robotic Mechanisms
,”
Int. J. Robot. Res.
0278-3649,
4
(
2
), pp.
3
9
.
2.
Salisbury
,
J. K.
, and
Craig
,
J. J.
, 1982, “
Articulated Hands: Force Control and Kinematic Issues
,”
Int. J. Robot. Res.
0278-3649,
1
(
1
), pp.
4
17
.
3.
Angeles
,
J.
, and
Rojas
,
A.
, 1987, “
Manipulator Inverse Kinematics via Condition-Number Minimization and Continuation
,”
Int. J. Rob. Autom.
0826-8185,
2
(
2
), pp.
61
69
.
4.
Angeles
,
J.
, and
Lopez-Cajun
,
C. S.
, 1992, “
Kinematic Isotropy and the Conditioning Index of Serial Robotic Manipulators
,”
Int. J. Robot. Res.
0278-3649,
11
(
6
), pp.
560
571
.
5.
Staffetti
,
E.
,
Bruyninckx
,
H.
, and
De Schutter
,
J.
, 2002, “
On the Invariance of Manipulability Indices
,”
Advances in Robot Kinematics
,
E. J.
Lenarcic
and
F.
Thomas
, eds.,
Kluwer Academic
,
Dordrecht
, pp.
57
66
.
6.
Merlet
,
J. P.
, 2006, “
Jacobian, Manipulability, Condition Number, and Accuracy of Parallel Robots
,”
ASME J. Mech. Des.
0161-8458,
128
, pp.
199
206
.
7.
Merlet
,
J. P.
, 2006,
Parallel Robots
,
Springer
,
New York
.
8.
Lipkin
,
H.
, and
Duffy
,
J.
, 1988, “
Hybrid Twist and Wrench Control for a Robotic Manipulator
,”
ASME J. Mech., Transm., Autom. Des.
0738-0666,
110
, pp.
138
144
.
9.
Ma
,
O.
, and
Angeles
,
J.
, 1991, “
Optimum Architecture Design of Platform Manipulators
,”
Proceedings of the IEEE International Conference on Advanced Robotics
, pp.
1130
1135
.
10.
Khan
,
W. A.
, and
Angeles
,
J.
, 2006, “
The Kinetostatic Optimization of Robotic Manipulators: The Inverse and the Direct Problems
,”
ASME J. Mech. Des.
0161-8458,
128
, pp.
168
178
.
11.
Gosselin
,
C. M.
, 1990, “
Dexterity Indices for Planar and Spatial Robotic Manipulators
,”
Proceedings of the IEEE International Conference on Robotics and Automation
, pp.
650
655
.
12.
Kim
,
S. G.
, and
Ryu
,
J.
, 2003, “
New Dimensionally Homogeneous Jacobian Matrix Formulation by Three End-Effector Points for Optimal Design of Parallel Manipulators
,”
IEEE Trans. Rob. Autom.
1042-296X,
19
(
4
), pp.
731
736
.
13.
Pond
,
G.
, and
Carretero
,
J. A.
, 2006, “
Formulating Jacobian Matrices for the Dexterity Analysis of Parallel Manipulators
,”
Mech. Mach. Theory
0094-114X,
41
(
12
), pp.
1505
1519
.
14.
Fang
,
Y.
, and
Tsai
,
L. W.
, 2003, “
Feasible Motion Solutions for Serial Manipulators at Singular Configurations
,”
ASME J. Mech. Des.
0161-8458,
125
, pp.
61
69
.
15.
Fang
,
Y.
, and
Tsai
,
L. W.
, 2003, “
Inverse Velocity and Singularity Analysis of Low-DOF Serial Manipulators
,”
J. Rob. Syst.
0741-2223,
20
(
4
), pp.
177
188
.
16.
Fang
,
Y.
, and
Huang
,
Z.
, 1997, “
Kinematics of a Three-Degree-of-Freedom In-Parallel Actuated Manipulator Mechanism
,”
Mech. Mach. Theory
0094-114X,
32
(
7
), pp.
789
796
.
17.
Liu
,
X. J.
,
Wang
,
J.
,
Gao
,
F.
, and
Wang
,
L. -P.
, 2001, “
On the Analysis of a New Spatial Three-Degrees-of-Freedom Parallel Manipulator
,”
IEEE Trans. Rob. Autom.
1042-296X,
17
(
6
), pp.
959
968
.
18.
Kim
,
H. S.
, and
Tsai
,
L. W.
, 2003, “
Design Optimization of a Cartesian Parallel Manipulator
,”
ASME J. Mech. Des.
0161-8458,
125
(
1
), pp.
43
51
.
19.
Tsai
,
L. W.
, and
Joshi
,
S.
, 2002, “
Kinematic Analysis of 3-DOF Position Mechanisms for Use in Hybrid Kinematic Machines
,”
ASME J. Mech. Des.
0161-8458,
124
(
2
), pp.
245
253
.
20.
Joshi
,
S. A.
, and
Tsai
,
L. W.
, 2002, “
Jacobian Analysis of Limited-DOF Parallel Manipulators
,”
ASME J. Mech. Des.
0161-8458,
124
, pp.
254
258
.
21.
Wang
,
Y.
,
Liu
,
H.
,
Huang
,
T.
, and
Chetwynd
,
D. G.
, 2009, “
Stiffness Modeling of the Tricept Robot Using the Overall Jacobian Matrix
,”
ASME J. Mech. Rob.
1942-4302,
1
(
2
), p.
021002
.
22.
Huang
,
Z.
, 2004, “
The Kinematics and Type Synthesis of Lower-Mobility Parallel Robot Manipulators
,”
Proceedings of the 11th World Congress in Mechanism and Machine Science
, pp.
65
76
.
23.
Wang
,
H. B.
,
Ishimatsu
,
T.
,
Schaerer
,
C.
, and
Huang
,
Z.
, 1998, “
Kinematics of a Five Degree-of-Freedom Prosthetic Arm
,”
Mech. Mach. Theory
0094-114X,
33
(
7
), pp.
895
908
.
24.
Mohamed
,
M. G.
, and
Duffy
,
J.
, 1985, “
A Direct Determination of the Instantaneous Kinematics of Fully Parallel Robot Manipulators
,”
ASME J. Mech., Transm., Autom. Des.
0738-0666,
107
, pp.
226
229
.
25.
Ball
,
R. S.
, 1998,
A Treatise on the Theory of Screws
,
Cambridge University Press
,
Cambridge, UK
.
26.
Hunt
,
K. H.
, 1990,
Kinematic Geometry of Mechanisms
,
Oxford University Press
,
New York
.
27.
Hong
,
M. B.
, and
Choi
,
Y. J.
, 2009, “
Kinestatic Analysis of Nonsingular Lower Mobility Manipulators
,”
IEEE Trans. Robotics
,
25
(
4
), pp.
938
942
.
28.
Lipkin
,
H.
, and
Duffy
,
J.
, 1985, “
The Elliptic Polarity of Screws
,”
ASME J. Mech., Transm., Autom. Des.
0738-0666,
107
, pp.
377
387
.
29.
Duffy
,
J.
, 1996,
Statics and Kinematics With Applications to Robotics
,
Cambridge University Press
,
Cambridge, UK
.
30.
Tsai
,
L. W.
, 1999,
Robot Analysis
,
Wiley
,
New York
.
You do not currently have access to this content.